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A DYNARIC ANALYSIS OF PIEZOELECTRIC STRAINED ELEMENTS

ABSTRACT

This report is addressed to the dynamic analysis of piezo-
electric structural elements under a static mechanical bias.
In the first part of the report, the current literature
pertaining to the dynamic apolications of niezoelectric
crystals is reviewed; attention is especially confined to
vibrations of structural elements. 1In the second part,

the fundamental equations of piezoelectric media are
expressed in variational form as the Euler-Lagrange eguations
0f certain integral and differential tvves of variational
principles. These variational orinciples are deduced from
a general principle of physics by augmenting it throuch
Friedrichs's transfermation. In the third part, the svstem
of approximate lower order governing ecuations of piezo-
electric strained elements is systematically and consistently
deduced in invariant form from the three-dimensional
equations of piezoelectricity by means of the variational
principvles. The governing equations accommodate all the
types of extensional, flexural and torsional as well as
coupled motions of piezoeiectric one-and two-dimensional
elements. Also, the unigueness of solutions is examined
and two unified numerical algorithms which are based on
Kantorovich's method and the method of moments are described
for solutions of the governing eqguations.
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CHAPTER 1
RECENT PROGRESS IN THE DYNAMIC APPLICATIONS OF
PIEZOELECTRIC CRYSTALS

ABSTRACZT

This chapter presents an updated review of open literature
concerned with the dynamic applications of viezoelectric
crystals. Representative current literature as well as
previously surveved literature that pertains to recent
applications are reviewed for waves and vibrations in piezo-
electric one-dimensicnal and two-dimensional elements.
Experimental works and some numerical methods are briefly
discussed, and future regsearch needs are indicated.

1- INTRODUCTION

This review, the fifth in a series of surveys on the dynamic
applications of piezoelectric crystals, deals with current
open literature pertaining to waves and vibrations in piezo-
electric structural elements. Accordingly, it supolements
the earlier review papers 21—3} and should be considered

in conjunction with them. The present compilation summarizes
the rapid advancement of the subject due to tne demand of
both c¢ivil and military technology since 1983.

Theoretical as well as experimental investigations have been
increasingly continuing for better design and better anpli-
cations of piezoelectric elements since the last review
article [3/. Comprehensive recent articles have discussed
the design and avwplications of these elements [4—9_, as have
several monographs and books [10-21]. However, a detailed
survey of design and apolication is excluded herein, as
before.

The purpose of this review is to guide and to stimulate the
reader through the pertinent literature that covers the most
recent contributions to one-dimensional and two-dimensional
plezoelectricity. Essentially, the review chapter contains
seven sections. The next section has to do with the funda-
mental studies; the nature of piezoelectric materials, the
basic equations of piezoelectricity and the associated
variational formulations are taken up. The third section
reviews vibrations of piezoelectric structural elements;

the works published on rods, plates, disks, shells, and
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layered and composite structures are surveyed. The fourth
section is devoted to the survey of works on accoustic
waves and energy trapping in piezoelectric materials; the
bulk waves, Rayleigh and Love waves, Stoneley and Lamb
waves, and Bleustein-Gulyaev waves are considered. The
fifth section deals with the studies on fracture and
fatigue of piezoelectric materials, and the sixth section
emphasizes the methods of numerical solutions for the
equations of viezoelectric elements. In section 7, remarks
on and indications of future possible trends in piezoelzc-
tricity conclude the chapter.

2- FUNDAMENTAL STUDIES

Piezoelectric synthetic materials with electric and elasto-
electric nonlinearities- in particular, piezoceramics and
volymers-have attracted considerable attention with regard
to their nature and the origin of induced vniezoelectricity
in recent vears [22—25]. The vhysical proverties of some
piezoceramic and polymeric materials and their dependence
on certain parameters have been investigated experimentally
L5,26—33] . The piezoelectric and pyroelectric behaviors
of polyvinylidene fluoride, a semicrystalline polymer, have
been observed after the application of hicgh electrical
stresces L27]. Measurements showed that the effect of
hydrostatic pressure on the piezoelectric prcoverties of the
polymer was very small; the material was also _stable with
pressure cycling to a certain pressure value .28 . Lang
.29, has recently compiled an extensive bibliogravhy on
piezoelectricity and onyroelectricity of polymers and their
applications. The dynamic characteristics of a number of
piezoceramic materials have been measured [30—31] , as has
the variation of piezoelectric strain constants in ceramics
under the action of uniaxial compression [32]. All the
piezoelectric coefficients and elastic compliances of a
crystal have been determined by the resonance method [33].
Experiments have been also done in order to investigate the
electromechanical properties of piezoceramics under cyclic
loading L34—36]. Another study has been conducted by use
of an optical unit_ for the precise measurements of
piezoconstants :37].

As a branch of the theory of electro-magneto-thermoelasticiy,
the theory of piezoelectricity - which is an anisotropic,
quasi-electrostatics, polarizable but not-maagnetizable and
non-conductiong field-has been well established on the basis
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of the fundamental axioms of motion and those of material
constitution [38’ The fundamental equations of linear
piezo electrlc1tv and thermoniezoelectricity have been
recorded F39 42 and | f43- 46 as have those on nonlinear
Dlezoelectrlc1ty L47 50 In piezoelectricity, there may
exist either an lntrlnSlC nonlinearity which is peculiar to
piezoelectric material or an induced nonlinearity due_to the
deformation of piezoelectric material. Gagnepain '51 has
dealt with the elastic and piezoelectric nonlinearities
in a ¢crystal and discussed their influence on the behaviour
of acoustic devices. The form invariant constitutive
relations have been derlved for transversely lisotropic
piezoelectric materials :2‘ On the other hand, quasi-
variational principles £6r the induced nonllnearlty have
been deduced from Hamilton's principle by the authorL53 35
that generate all the three-dimensional equations of
strained piezoelectric continua. He has also derived, by
means of the principle of virtual work, certain variational
principles, including thermal effects for a 01ezoelectrlc
medium under mechanical bias [56, 57] . Hailan 1381 has
explored the consonance of state variables of a piezoelectric
body and systematically proposed the associated variational
orinciples. Other variational principles have been formulated
that may be extended to account for the equations of non-
lJ ear piezoelectricity 59 and llnear thermoviezoelectricity
;, . Moreover, Kudrvavtsev 61 has derived a system of
linear eguations for electrically polarized ceramics that
differs from corresponding equations for a piezoelectric
medium; 1t accomodates initial mechanical stresses due to
the polarization.

In the oresence of moving dislocations and disclinacions
(defects), the fundamental equations of thermopiezoelectricity
nave been studied £for the case when the plastic deformation
caused by the defects has been taken to be unrelated to the
thermopiezoelectric effect of materials [62.. 2n electric
and elastic multipole approach has been develorved in studying
the physical behaviour of various defects (dlSlObathp,
inhomogeneity) in finite piezoelectric media 63 Also,
the defects have been studied in an infinite med1UM under
tne_influence of both mechanical and electric field loading
_64_. The internal strains induced in piezoelectric
crystals have been considered for given external strains
produced elther at constant stress or at constant electric
field 63 . Electroacoustic equations have been constructed
for plezoelactrlc powders 66' and for nonlocal piezoelec-
tricity 67



3- VIBPRATIONS OF STRUCTURAL ELEMENTS

In investigating the vibrational characteristics of piezo-
electric structural elements, the coupling of elastic field
and guasi-static electric field as well as the inherent
anisotropy of materials add stupendous complexities in
numerical computations. Accordingly, the approximate lover
order equations of elements have typically been deduced
from the three-dimensional equations of piezoelectricity.
The equations of elements are then approximately solved for
the characteristics of any specific case. However, the
vibrational characteristics have been determined by solving
approximately the three-dimensional equations for a few

special cases. This approach is still being developed and
is not common in piezoelectricity, despite the help of
large computers. Characteristics sensitive to certain

parameters have been examined with the eguations of elements
Analytical and corroborated experimental studies have been
sarveyed for the vibrational characteristics of structural
elements used mostly in piezoelectric devices.

RODS. 1Investigations concerning the analysis of piezoelec-
tric rods have been directed toward either deriving mac-
roscopic eguations of rods [66—77] or solutions of specific
problems C78—971 i both have been studied at low-freguency
vibrations. Tiersten and Ballato [ 68] have obtained mac-
roscopic differential equations accounting for the nonlinear
extensional motion of thin piezoelectric rods and have
treated both the intermodulation and nonlinear_resonance of
quartz rods. Milsom and his co-workers ;69,70] have
described a three-dimensional mode-matching theory for
coupled-mode piezoelectric rectangular bar; they showed

good agreement between theory and experiments for many
parameters of the bar resonator. Green and Naghdi L7l] have
formulated a theory of isothermal forced vibrations of
piezoelectric crystal rods as a special case of their one-
dimensional electromagnetic theory. Kittinger and Tichy
L7ZJ have developed a material frame theory of the influence
of an electric biasing field on the extensicnal resonance
frequency of an electroded thin piezoelectric rod. 1In a
series of papers, the author and his co-workers [73-79] have
deduced, by use of Mindlin's method of reduction [ﬁo] '
various one-dimensional electroelastic equations of crvstal
bars from the three-dimensional equations of viezoelectricit
The electroelastic equations account for all the types of
extensional, flexural and torsional as well as couvnled motior
of bars for both low and high frequencies. The effect of
mass loading of electrodes D4] , the effect of mechanical
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bias /5‘ , thp temperature effect [76. and the elastic
nonlifnearties [77, 78\ have been all taken into account, and
an apolication to blomechanLcs has been described L794- The

sufficient conditions have been enumerated for the uniqueness
in solutions of the linear electroelastic equations by use

of either the classical energy argument [73 or the logaritmic
convexity argument [77

An analysis of the flexural-mode eguations has been presented
for a rod with a vibration isolator [81]. Electrode stress
effects have been calculated approximately for length-
extensional and flexural resonant vibrations of long, thin
bars of quartz [82] . The mechanical behavior of a piezo-
electric bar with an electrical voltage as well as a time-
dependent flux of heat at one end has been studied L83

A simple one-dimensional model has been used to 1nvestlgate
the effect of the relaxation time on the behavior of a semi-
infinite piezoelectric rod under a thermal shock at its end
‘847 . solov'ev [85] has recently examined the influence of
the electroded zone on the natural frequency dominated
thickness resonance of a piezoceramic rod of rectangular
cross-section under the conditions of plain strain. The
extensional vibration of a cylindrical rod with longitudinal
piezoelectric coupling has been dealt with in an approximate
crocedure. The depolarizing-field effect has been analvzeu
in voi3 o©f finite and infinite lengths 86 . A detailed
numerical analysis of the dispersion relatlons has been
reported for the axisymmetric normal waves of a piezo-

ele”rlcally active bar waveguide [87] . The vibrational
dissivation characteristics of a piezoceramic bar have been
considered 88 , as has the electrical exication of an

asymmetrically radiating bar [891.

Furthermore, Chenghao, Zheying and Yulong [90,91] have
concentrated on studying the longitudinal vibrations of
piezoelectric bar with lateral and lougitudinal polarization
and those with electric field perpradicular and varalel to
the direction of vibration. The forced longitudinal vibra-
tions of a viscoelastic piezoceramic rod with transversal
polarization have been examlncd under the influence of
harmonic electrical exicatica r97l. Paul and Venkatesan
L93 94 have studied the vibrations of a piezoelectric solid
cyllnder of circular, elliptical and arbitrary cross section
by use of an asymptotic method and Fourier's expansion
collccation method. Other contrlbutlonb are available on
the dyvnamics of piezoelectric rods {95-99].

PLATES. Due to their extensive use as a design feature in
piezoelectric devices, studies concerning the dynamic




behavior of plates are being continued to grow at a rapid
pace after the publication of previous reviews Ll—3,39,100—
102]. A few studies were directed toward deriving the
approximate, twoc-dimensional egquations of plates on the
basis of the general differential equations of piezo-
electricity [103-109]. The equilibrium equations of trans-
versely inhomogeneous piezoelectric plate have been obtained
by a method of asymototic expansion [103]; these macroscopic
equations can be readily extended to account for vibrations
of piezoelectric plates [1047. Similarly, the equations of
low-freguency vibrations of piezocrystalline plates have
been derived by the asymptotic method [105]. The governing
eguations and some experimental results concerning GT-type
quartz crystal plates have been described £106:. By means
of a variational-asymptotic method, the macroscopic eguation
have been established which gcvern the high-freguencvy long-
wave vibrations of piezoceramic plates with thickness
polarization [107]. Mindlin [108] has obtained the two-
dimensicnal equations of motion of piezoelectric, doubly
rotated, guartz plate from the three-dimensional equations
of linear piezoelectricity by expansion in power series of
the thickness coordinate of the plate. He then solved the
macroscopic eguations for forced vibrations of electroded
ST-cut quartz plates and examined the effects of wniezoslec
coupling and the mass of electrode coatings. By employin
Mindlin's method, Lee and his co-workers [109] have also
derived a hierarchical set of two-dimensional =2gquations of
motion for piezoelectric crystal plates with or without

s
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e@lectrodes. Likewise, the author [57,110] has presented a
nonlinear mathematical model for the dynamics of crystal
plates with or without a mechanical bias. Moreover, the

plane piezoelectric problems have been studied by exnanding
the static electroelqsti; equations into a series of trig-
onometric functions [111]. The stress state and the electri
field distribution have been determined in a vpiezoelectric
laver with a periodic system of electrodes at its surfaces.

Many analytical studies have been devoted to solutions of
vibrations of piezoelectric plates excited in certain modes
C112—123]. The thickness dominated vibrations of a plate
with electrod: on both its faces have been treated under
both the parallel-field and perpendicular-field excitations
of the plate ;86]. The exact frequency equation for trans-
verse vibrations of a piezoelectric layer has been found
and then_solved both numerically and by an asymptotic method
_112,113]. Stevens and Tiersten [ 114] have calculated
changes in res~nant frequency with temperature for the
fundamental and some of the harmonic overtone thickness




modes of an electroded counterad  AT-cut quartz plate due to
the thermally induced biasing stresses and strains. Thery
showod the influences of both contouring and electrode size.
The extensional and flexural biasing states have been
determined by means of a variational procedure 2115,116:.
Sirha and Tiersten 21172 have investigated thermally gener-
ated transient freguency excursions of the thickness modes
of a doubly-rotated quartz plate. Further, the thickness
modes of piezoeclectric plates have been studied [118 wusing
z-transform techniques ull9]. These modes have been
considered by Chen-hao and Zhe-ying [120] in calculatin~ the
effects of the electrode load to the resonant freguency,
displacement, and stress distribution. Lee and Hou [121]
have recently dealt with the computations of freguenciec

of tnickness dominated vibrations for a doubly-rotated
plezoelectric crystal strip with a pair of electrode-plated,
traction-free edges. Ballato and his co-workers [122_ stu-
died all three modes of the vibrations driven by lateral
fields. Stevens and Tiersten [lZi] have also nresented an
analvsis of doubly rotated guartz plates vibrating in
thickness modes with transverse vibration. They assumed
small piezoelectric coupling and small wave numbers alonc
the plate.

The case of pure thickness-resonance as well as that of
nonlinear thickness-resonance have been studied in detail
for an electroded contoured AT-and ST~cut quartz nlate
1124, as has the case of a vibrating polymer plate (125 .
The steady-state vibrations of a thin pilezoceramic plate
volarized along its variable thickness have been examined
.126_. The possible existence of transverse backward waves
in oiezoelectric plates, a rzlatively rare phenomenon, has
also been considered [1273 ; critical conditions for its

existence were pointed out. Furthermore, analvtical works
aimed at including the coupling of vibrational modes have
been reported _103,128,129). An analysis has been carried

out for the coupling between the thickness-shear mode and
the flexural mode of a fully electroded plate; vredictions
were in good agreement with experimental data "128. . Mindlin
.108. has discussed the couvnling of the fundamental thickness-—
shear mode with flexure, extension and face-shear overtones
in an electroded, piezoelectric plate. 1In addition, Shu-
chu (1297 investigated the fundamental modes of counled
vibrations of piezoelectric plates and also has provided
simple analytic formulas for the resonant frequencies of
vlates.

Various authors [130-133] have dealt with analytical inves-
tigations and experimental corroboration of vibrations of




piezoelectric plates. Ballato and his co-workers [130-131]
treated crysal plates driven piezoelectrically in simple
thickness modes by thickness-and lateral-directed exciting
electric fields; they also reported experimental results.
Suchanek u32] has examined the influence of the electrodes
on the frequency of piezoelectric crystal plates by using
Mindlin's theory D9]; he demonstrated both theoretically
and experimentally that asymmetric electrode location rapidly
reduced its elastic influence on freguency and discussed the
coupling of certain modes. The frequency sensitivity to
temperature has been calculated and measured for a thin
uartz plate excited piezoelectrically in thickness modes
[133]. Experimental results coincide well with the analytical
results based on the thickness-vibration theory [100].
Bahadur and Parshad [134—136] surveyed some experimental
methods for determination of mode shapes, frequencies, and
amplitude of vibration of quartz crystals. The three-
frequency parametric interaction of elastic waves with
dispersion in a piezoelectric rectangular plate has been
considered £137j ; velocity dispersion was determined from
an experiment with lithium niobate crystals [137] . Addi-
tional experimental investigatinos have been carried out by
Hertl et al. [138], Chenhao [139], Yushin and Beige [1407,
Songling and Yiyong [141], Gruzinenko et al. [1427and ~
Bolkisev [143} . The in-plane vibration amplitudes of
quartz crystals have been measured by a mechanical setup
that is insensitive to environmental disturbances :138J
The piezoelectric damping configurations have been inves-—
tigated for both the thickness and longitudinal vibrations
of a piezoceramic plate [139] . The nonlinear electroacoustic
effects have been studied in a piezoceramic slab [140].

DISKS. The ever-expanding use of disks as various active
elements of piezoelectric devices has stimulated remarkable
interest in vibrations of piezoceramic disks with thickness
or radial polarization. Begy and Bechtel [144} have
predicted the electromechanical behavior of non-axisymmet-
rically loaded piezoelectric disks with electroded faces.
The authors [145,146] also studied the steady vibrations

of a piezoelectric disk interacting with an elastic half-
space using the results of their theory [144]; the effects
of the contour modes were included. Planar vibrations have
been treated for a thin piezoceramic disk with metal elec-
trodes deposited on the side surfaces of the disk and
connected to an electrical load [147] . Moreover, the free
radial vibrations of a piezoceramic disk polarized in
thickness direction have been investigated [148] , as have
its vibrational characteristics [149] , and the frequency
spectrum of coupled axial and radial vibrations of finite




piezoceramic disks [150]. The stress distribution and the
electric induction developed in an annular disk of
inhomogeneous piezoelectric material spinning either with
uniform angular velocitv [151] or with time varying angular
velocity [152] have been studied. Karlash [153] has dealt
with energy dissipation during radial vibrations of thin
circular piezoceramic disks with thickness polarization.

Using Mindlin's method [154], a system of two-dimensional
equations of successively higher orders of approximation
has recently been derived for vibrations of piezoelectric
disks under initial stresses ElSS]. A system model of the
thickness mode piezoelectric disk has been derived from the
fundamental equations of piezoelectricity [156] . Although
analvtical studies with experimental justification have
been pursued in this area [lS7—lGl] , more work 1is needed.
The radial modes of pilezoceramic disks with open-circuit
electrodes have been treated [157] . An analytical model
has been proposed for evaluating the contribution of radial
modes to the pulsed ultrasonic field radiated by a thick
piezoelectric disk; the efficiency of the model has been
shown by agreement between the results of the model and
those of corresponding experiments [158] . A theoretical
and experimental research has been conducted on responses
to resonance and oscillation frequencies and temperature
(1597 . Further contributions include work on desensi-
tization with increasing hydrostatic pressure in a flexural
piezoceramic disk [160] and an empirical treatment of
thickness modes in circular AT-cut quartz plates with
respect to the diameter and mass_loading of electrodes [161].
Ohga and his co-workers [162,163] have examined both
theoretically and exverimentally the flexural vibrations of
a piezoelectric disk. Besides, Chongfu et al. [164] and
Shouliu [165] have contributed to the radial and thickness
vibrations of a piezoelectric disk, including their
experimental verification.

Experimental determination of the vibrational characterictics
has been reported for thin piezoceramic disk [166-175]

The mechanical resonant frequencies of disks excited
electrically have been investigated by Chen [166—170j . The
experimental evidence in these studies indicated that the
number of purely mechanical resonances increases with
decreasing disk thickness and that the domain structure
affects not only the number of these resonances but also
their amplitudes. Vibration velocity distributions and
frequency spectra of thick disks with and without bevelling
have becn measured as a function of the diameter-to-thickness
ratio [171] . An experimental investigation has been conducted
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to determine the effect of different_edge conditions on the
response of piezoelectric disks [172] ; response was
relatively insensitive to changes in edge conditions. The
transient fields of pulsed ultrasonic sources radiating into
water have been investigated using thick piezoelectric_disks
and broadband thickness-resonant disks as sources Ll73].

The spectral characteristics and amplitude distribution of
the coupled flexural and thickness-shear vibrations of AT-
cut guartz disks have been studied [174,175]

SHELLS. Of the methods for reducing the three-dimengional
differential ecuations of elastodynamics [39,104,154J, the
asymptotic method has been used to derive the aporoximate,
two-dimensional equations of piezoceramic shells polarized
along one of the_families of coordinate lines of the middle
surface [176—178]. Using again an asymtotic method,
Rogacheva [179,180] has examined the free vibrations of
piezoceramic shells of arbitrary shape. He has classified
various types of vibrations and formulated the general
theorems of electroelasticity. By the method of symbolic
integration in combination with averaging of the electric
potential over the shell thickness, the basic macroscopic
relations have been formulated for a thin piezoelectric
shell with thickness polarization and variable stiffeness
[181] . These relations have then been used to examine

the steady-state longitudinal vibrations of a cantilever
rod of linearly varying thickness. Piezoceramic shells
with thickness polarization have been treated [}82] .
Following the same procedure as Senik [181 , the governing
equations were constructed for piezoceramic gently sloping
shells with meridional polarization; transverse shear
deformation was considered [183] as were governing equations
for piezoceramic shells with various directions of pdarization
[184,185]. A modified theory of piezoceramic shell polarized
along the thickness has been developed by taking into
account the transverse shear and the rotatory inertia [186].
By the method of series expansions in the thickness coordi-
nate , Khoma [187,188] has derived the two-dimensional
equations of piezoelectric and thermopiezoelectric shells.
Similarly, the series expansions of field guantities in
terms of Jacobi's polynomials have been used to construct

a refined theory for axisymmetric waves in piezoceramic
cylinders [189] . Green and Naghdi [190] have concerned
with a theory of piezoelectric membranes as a special case
of their theory of shells in which account has been taken
of ?lec%romagnetic effects; this work has been mainly based
on [191].
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Within the limit of classical theory of elastic thin shells,
that is, under the Kirchhoff-Love hypotheses of shells

1917, Honazhang [192] and Shuchu [193] have developed a
heory of thin shellsof radially polarized piezoceramic
cvlinder. As an application of Schuchu's theory, the
electromechanical parameters of piezoceramic thin cylindrical
tube transducers have been calculated {194] . Again, under
the Kirchhoff-Love hypothesses for the mechanical variables
and the corresponding hypotheses for the electrical variables,
Karnaukhov and Kirichok [195] have constructed a thermomechan-
ical theory for harmonic vibrations of viscoelastic
piezoceramic shells, including the temperature dependence of
materials. Chao [196,197] has presented a theory of piezo-
electric and piezoceramic shells by taking a variational
procedure as the basis of his derivation. Further, by a
variational method of reduction [39,80,198-200], the author
[1,57,201—204] has systematically derived various theories
of piezoelectric shells, including the effect of mass loading
of electrodes, the thermal effects and the effect of mechan-
ical biasing stresses for both low and high frequency
vibrations. He has examined the uniqueness in solutions of
the governing equations of piezoelectric and thermopiezo-
electric shells. On the other hand, Rogacheva [205] has
dealt with the Saint-Venant type conditions in the theory
of piezoelastic shells with electrodized face surfaces.

Many investigators have studied the axisymmetric and non-~
axisymmetric motions of piezoceramic hollow cylinders with
axial, radial and circumferential polarization [206—227]
through the use of special functions (e.qg., [208]), power
series representation of field variables in the radial
coordinate L209], numerical integration of the initial
equations by the method of discrete orthogonalization L210],
the finite element method and alike. The axisymmetric
motion of radially polarized piezoelectric hollow cylinders
has been_investigated [206,211 212%. The longitudinal
[212-215] and circumferential |216] as well as torsional
wave motions [217] of a piezoelectric solid cylinder have
been studied in detail. Loza and his co-workers [218-220]
have dealt with the propagation of axisymmetric and non-
axisymmetric waves in a piezoceramic hollow cylinder with
radial and axial polarizations, and he [20@ has also
treated the axisymmetric acoustoelectric wave provagation
in the cylinder with circumferential polarization. The
dynamic stress state has been determined in a compound
Eiezpceramic hollow cylinder with thickness polarization
L221,. Paul and Venkatesan E222]have considered the
longitudinal and flexural modes of a hollow circular cylinder
of piezoelectric ceramics. The forced axisymmetric vibrations
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of a cylindrical piezoceramic shell with radial polarization
[223] and the nonstationary vibrations of the shell with
circular polarization [224] have been studied. Burdess

225] has presented the equations of motion for a thin piezo-
electric cylinder gyroscope. Then he has determined the
dynamic response of gyroscope to constant and harmonic rates
of turn. The natural free oscillations of a class of
cylindrical piezoelectric ceramics and the correspondin
displacement amplitudes have been obtained [226] . Tingrong
_227] has reported a new measurement method and used it for
measuring the material constants of a radially polarized
thin piezoceramic cylindrical tube.

The interaction effects of the radiation locad and various
modes of vibrations of a piezoceramic cylindrical shell have
been examined for the case when the shell with thickness
polarization is partially in contact with an acoustic

medium and surrounded by a soft shield [228] . 1In a similar
case, Babaev and Savin [229] have examined the action of
transient electrical signal on the motion of a thin-walled
cylindrical piezoceraimic shell with circumferential polariz-
ation, which is surrounded by and filled with a compressible
fluid. Shu-chu [193] has dealt with the scattering of plane
waves by a radially polarized piezoceramic cylinder using
Green's function and the method of separation of variables.
Loza and Shul'ga [230,231] have analyzed the axisymmetric
vibrations of a hollow piezoceramic sphere with radial
polarization. The dissipative heating of a viscoelastic
piezoceramic ball with temperature-~dependent properties has
been investigated [232]. The radially polarized ball performs
radial vibrations in an acoustic medium under harmonic
excitation. Additional works have included some analytical
and experimental results for fezoceramic spherical and
cylindrical shells [233-237].

LAYERED AND COMPOSITE STRUCTURAL ELEMENTS. With their
desirable vibration characteristics for ultrasonic applic-
ations, piezoelectric layered and composite structural
elements have been widely used in different technologies.
The use of composite viezoelectric materials and the basic
ideas underlying their sum and product properties have been
described [238-241] . Basically two types of macromechanical
models exist for the analysis of these structural elements:
the effective modulus model and the effective stiffeness
model, as in composites [242]. The effective modulus model
replaces an element by a representative homogeneous medium
with the aid of the averaged material constants of element
constituents. This model, although it is relatively simple,
omits the coupling of adherent layers in laminated composites.
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The extension of the Lagrange and Karman models of plates as
well as the Kirchhoff-Love models of shells to crystal lamina
elements leads to their effective modulus model. Along this
line, a macromechanical model of regular pviecewise-
homogeneous structures with piezoceramic matrices has been
presented [243]. The effective constants of randomly
inhomogeneous piezoactive (piezoelectric and piezomagnetic)
ceramics have been determined [244]. Similarly, the effective
properties of composite piezoelectric ceramics stochastically
reinforced by spheroidal inclusions have been considered;
from this follow as limit cases materials with laminated,
unidirectional fibrous and granular structure [245]. On the
other hand, the effective stiffeness model combines both

the physical and geometrical properties of lamina constit-
uents and incorporates all their essential features. With-
in the concept of this model, the one-dimensional and two-
dimensional approximate eguations of laminae have been
consistently derived, including a theorem of uniqueness

(1, 74\ . As an extension of classical models, the macroscopic
relations of electroelasticity have been derived for
multilayer pilezoceramic plates and shells [246 255 their
steady-state vibrations have been reported in some special
cases.

Notably, Parton and Senik [246] have derived macroscopic
equations of multilayer piezoceramic shells with thickness
polarization of the layers. They have also treated the
vibrations of a shallow spherical shell of three layers.
Likewise, Karnaukhov and his coleagues [247-250] have
constructed the governing equations of laminated piezoceramic
plates and shells by taking into account the geometrical
nonlinearity, the effect of temperature, and, in particular,
the effect of viscosity. The viscosity effect is important
for polymeric materials with polarization in hydroacoustics
and, in fact, plezoceramic materials are viscoelastic in
terms of their mechanical nature [251] . The electrovisco-
elastic layered shells have been polarized through their
thickness or in one coordinate direction. The effect of
temperature has been also considered in describing the
dvnamlc behavior of multilayered piezoceramic shells with
thickness polarization under harmonic excitation [2327

Loza and his co-workers L}SBJ have described an algorithm
in investigatinc the provagation of nonaxisymmetric
acoustoelectric waves in a layered circular cylinder with
axial, radial or circumferential directions. Shu-chu

"255 has treated the coupled vibrations of a composite
cylinder in a way convenient to engineering design and
estimation. 1In addition, the radial mode oscillations have
been analyzed for a piezoelectric element consisting of
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several concentric cylinders [256] . The influence of
height of a hollow, two-layer piezoceramic cylinder has

been investigated on the spectrum cf its resonance frequen-
cies [257] . Moreover, the anti- and axi-symmetric elektro-
mechanical wave propagations have been considered in long
borie [258] and [259] where the bone has been modelled as

a two-layered cylindrical shell.

Other studies have involved a close examination gf resonances
and modelling of composite piezoelectric plates [260-269_.
Auld and his co-workers [260,261] developed a Floguet
theory of wave propagation in periodic composites that

has been shown to agree with experiment. The thickness-
extensional vibrations of a composite plate [262] have been
studied in detail by use of a variational principle due to
Tiersten [39] . The flexural vibrations of _a piezoceramic
laminae have been numerically investigated [263] . Ting-
rong [264-266] has dealt with the forced vibrations of
piezoceramic ccmposite circular plate excited either with
voltage or with homogeneous pressure. The effect of
attachment conditions has also been considered on the
parameters of a two-layered piezoceramic plate [267} .

The geometry of composite vlates has been analyzed by the
finite difference method [§68] . The stress-strain state
of layered-stepped piezoelectric disk has been analyzed
under flexural {270 and coupled flexural-shear oscillations
L27l]. Also, a method of iteration has been presented for
the coupled dynamic analysis of a layered circular disk
with thickness polarization. The influence of the depenience
of material properties on temperature has been considered
[272J . On the other hand, a general transfer matrix
description of arbitrarily layered piezoelectric structures
with two electrodes has been derived [273] . Besides,
research has been conducted in the area_ of composite and
layered piezoelectric rods [272,274,275] . All the elastic,
piezoelectric and dielectric constants have been analytically
derived for a one~ and two-dimensional multilayered
structures and some exveriments have becen carried out

[274] . Also, the results of an experimental study of
vibrations of composite piezoelectric rod with longitudinal
polarization have been reported [275] .

4- WAVES IN CRYSTALS

In piezoelectric crystals, the interaction between the
elastic waves and the electromagnetic waves is weak because
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their velocities are very different. Therefore, ths Lwo
types of wave propagation have been always treated

independently in linear plezoelectricity [276]. Rttontion
has recently been paid to the interaction of electromagnatls
and acoustic waves due to the nonlinear piezoelectric

effect [277] and that in piezoelectric plates [273].

Gilinskii and vdovin [279] have described the propagation

of accusto-electromagnetic pulses in a bounded piezoelectric
crystal, including the coupling of elastic and electro-
magnetic waves. However, only the propagation of elastic
waves 1s surveyed herein. Some reviews and treatises have
been mentioned [2,3,8,12-18,276,280-289]. Work done on bulk
waves in unbounded medium and that on surface waves in semi-
infinite medium is reviewed in this section. Bleustein-
Gulvaev, Rayleigh and Love, and Stoneley and Laamb wavea:s

are also discussed, as 1s energy trapping.

BULK WAVES. The research on bulk acoustic waves and
especially on surface skimming bulk waves and reflected
pulk waves has been carried out in microwave acoustic
devices [290—295]. Josse and Lee [290] have reported an
analytical solution that describes the analysis of exzit-
ation, interaction and detection of bulk and surface wave
on piezoelectric crystals. He and his co-workers [291-29
have theoretically analyzed the reflection of bulk
acoustic waves, the amplification of surface skimming

SH waves and the amplification and convolution of reflected
bulk acoustic waves in rotated Y-cut quartz. The excit-
ation and detection of surface-generated bulk waves have
pesn treated [294,295]. The synchronous interactions of
pulk acouustic waves have been investigated in piezoelectric
insulator crystals with spatially inhomogeneous structure
[2963. The bulk-surface electrocacoustic waves have been
considered at the interface of a piezoelectric with a
semiconductor [297]. The conversion of bulk strain waves
has been examined at a frequency boundary in a semi-
infinite piezoelectric crystalline medium [298]. The
reflection of bulk acoustic waves has been studied in a
layered pilezoelectric (insulator)-gap-semiconductor struc-
ture, as has experimentally the linear and nonlinear
acoustoelectronic interaction in such a structure [299,300].
An interactive computer-aided analysis has been described
for calculating the main properties of bulk acoustic waves

in materials of arbitrary anisotropy and piezoelectricity
[301] as well as the sensitivity of bulk waves to the
temperature effect [302]. The numerical calculations of

the anisotropy of electric-field control of the velocity

of bulk acoustic waves have been reported in piezoelectrics

s
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having a sillenite gstructure [303]. The properties of bulk
and surface acoustic waves have been considered in piezo-
electric crystals with both intrinsic and induced non-
linearities. The nonlinear propagation of a finite
amplitude wave and the propagation of a small amplitude
wave have been treated in a strained piezoelectric crystal
[304]. By choice of crystal cut and wave propagation
direction, bulk waves may propagate nearly parallel to the
crystal surface; these waves have been termed as shallow
bulk acoustic waves or as surface skimming bulk waves.
Research progress and prospects can be found in a notable
article [305]. Theoretical results have been reported
certain piezoelectric crystals; propagation characteristi
are civen on the reflection of surface skimming bulk wave
[306j as are experimental results for nonlinear interac
tions when bulk acoustic waves reflect off the boundary of a niezc~
crystal in a layered structure . Other analytical and eiperimental
contributions have been reported [308-313].

SURFACE ACOUSTIC WAVES. Surface sound (acoustic) waves in
solids have wide applications in piezoindustry; hence,

they have been thoroughly investigated both theoretically
and experimentally [7-19,276,280-283]. An analysis of
excitation of surface waves with piezoelectric layers has
been presented [314,315]. The relations between the

energy flux, group and phase velocities of surface

acoustic waves in an arbitrary semi-infinite piezoelectric
medium have been established for various types of boundary
conditions; they have also been established for Stoneley
waves in piezoelectric bicrystals [316]. The energy

fluxes along the boundary in the reflection of a transverse
plane wave have been eXamined [317]. The dispersion curves
of straight-crested wave propagating in a ST-cut guartz
plate have been obtained by use of the eguations of piezo-
electric crystal plates due to Lee et al. [1097; the
agreement has been very close between the theoretical
prediction and the experimental results [318]. The scat-
tering of acoustic waves by transverse and longitudinal
modes has been elucidated in a piezoelectric half-space
[319]. In addition, the scattering of surface waves has
been consistently dealt with, as has the interaction
between surface waves in piezoelectric media and electrode
structures [320]. The carrier drift has been shown to
exert a significant influence on the scattering of a
transverse wave by a cylindrical cavity in a hexagonal
piezoelectric [321]. Also, an approximate method of
analysis [322] and a variational analysis [323] have peen
introduced in studying the scattering properties of

surface acoustic waves. A guantitative determination of
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diffraction effects has been made in surface accoustic
wave harmenic generation [324]. Moreover, the re‘lection

of a *raﬁ:»orbe wave from the surface of a hexagonal piezo-
electric crystal has been considered and the effect of

plezomnodull variations on the reflection phase shift has
een examined [32ST The specific characteristics of the
reflection of a transverse wave have been discussed at a
piezo=lectric~-semiconductor interface under accustic
Eonding conditions L}26] A variational analysis of the
reflection of surface waves by arrays of reflecting grooves
nas peen presented [327].

Viktorov and Pyatakov [328] have dealt with the main
specific features of surface acoustic waves on cylindrical
surfaces of piezoelectric crystals, including the influence
£ surface curvature, crystal anisotropy, piezoelectric

(

of
effect and conductivity of cylinder material. Detailed
computational results have been reported for the viscous
attenuation and velocity of surface acoustic waves prop-
agating along various directions in selected orientations
of guartz [329]. An analysis of thermal effects has been
carried out for the propagation characteristics of surface
acoustic waves [330—332]. On the other hand, the interac-
tion between surface electrodes and piezoelectric crystals,
a topic of importance for various surface wave devices,
has been investigated [333-342]. Longitudinal and transverse
acoustoelectric effects have been discussed in a layered
s2miconductor-piezoelectric structure [3357 In a series
of papers, V'yun [336-340] has dealt with the acousto-
electric intnractlon of surface acoustic waves in layered
clezcelectric-semiconductor structures. He has developed
an lmpedance method in studying the acoustcelectric
interaction with weak electromechanical coupling [336],
considered the intrinsic nonlinear interaction of surface
waves [339] and reported the characteristic properties
0f the hysteresis of acoustoelectric interaction [340]. In
addition, a varilatioral approach has been used to analyze
the parameters that describe the interaction of surface
acoustic waves with short-circuited metal strip gratings
‘? IJ. A coupled amplitude egquation has been developed
that has been applied to interactions arising from the
we2akx nonlinearities of materials supporting surface
acoustic waves [342]. Alippi [343] has studied gqualita-
tively the effects associated with nonlinear acoustic
propagation in piezoelectric crystals with special
reference to the case of surface acoustic waves. FHe
performed experiments on the effects. A treatment of
second harmonic generation of surface waves in piezoelectric

D
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solids[344] has been presented by use of the nonlinear
electroelastic equations [345]. Analytical expressions have
been derived fou the velocity and attenuation of surface
acoustic waves in layered structure [346], and a compact
formulation of these waves has been given by extending the
surface Green function matching analysis [347]. The gener-
alized Green's function has been used in the analysis of
surface waves [313]. A numerical method of computation

has been described for acoustic wave generation [248] and
acoustic wave properties [349].

In the presence of induced nonlinearity in piezoelectric
media, the velocity of surface acoustic waves is dependent
upon the nature of biasing stresses and strains and mode

of wave propagation. The nonlinear properties of surface
acoustic waves have been discussed; in particular, the
harmonic generation and the amplitude shift have been
examined as a function of propagation direction [304]. The
temperature and stress induced effects on the propagation
characteristics of surface elastic waves have been investi-
gated [302,350-356], as has the influence of intrinsic
stresses [353,354]. Sinha et al. [355,356] have describsd
some analytical and experimental results on the stress and
temperature induced effects on the surface wave propagation
in <crystalline gquartz. The propagation of surface
accustic waves has been experimentally studied in ion-
implanted lithium niobate [357-359], as has the influence of

a biasing electric field on the propagation [360,361].

BLEUSTEIN-GULYAEV WAVES. This type of surface waves has no
counterpart in a purely elastic material; it is a face-
shear type of elastic waves that arise at the free surface
of a piezoelectric crystal. The dispersion relation of
Bleustein-Gulyaev waves has been investigated along symmetry
directions of surfaces and interfaces, either metalized or
non-metalized, of piezoelectric cubic crystals. It has
been shown that no Bleustein-Gulyaev waves can exist along
certain direction of a surface [362]. The propagation
characteristics of waves have been studied in a piezoelec-
tric crystal [363] as well as its nonlinear constitutive
relations [364]. Kudryavtsev and Parton [365] have dealt
with the excitation of Bleustein-Gulyaev shear surface
acoustic waves by two ribbon electrodes of finite length
and determined the characteristics of these waves. The
effect of reflection and transmission of a Bleustein-
Gulyaev wave has been studied theoretically [366]. This
effect has been also investigated experimentally [367].

The surface and bulk waves with emphasis on a Bleustein-
Sulyaev wave have been considered in elastic semiconductors
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in a bilas electric field [369,369]. The scattering of waves
has been examined analytically in normal incidence on an
ldeally conducting strip on the surface of a hexagonal
crystal [370]. The scattering at the edge of a metal film,
gaps of various width, a wide electrode, and the rectangular
end of an acoustic line have been studied [371] Additional
contributions on waves have been made by Lyumibov [372],
who dealt with the conditions of existence and dispersion

of elastic surface waves due to the piezoelectric effect in
a free, infinite crystal plate. The generation of ‘a
Bleustein-Gulyaev wave has been treated in oblique incidence
of a shear bulk wave on the nonhomogeneous boundary of a
pievoelectric half-space [373]. Leaky or pseudo-surface
Bleustein-Gulyaev and Bleustein-Gulyaev waves have also

been described in detail [374,375].

RAYLEIGH AND LOVE WAVES. Rayleigh wave is a mode of
acoustic wave propagation that may exlst at the free

surface of an elastic half-space, while Love wave propa-
gates between the interface of a thin layer and an elastic
half-space. Chenghao and Dongpei [376] have recently

dealt with the scattering of Rayleigh wave through a groove
on the surface of a plezoelectric crystal; they also
analyzed the scattered field by the boundary perturbation
method. Approximate dispersion relations for Rayleigh and
Love waves have been obtained in an elastic half-space

with a thin piezoelectric film [377]. The generation of

the second harmonic cof a Rayleigh wave has been investigated
in a layered structure [378]. A theoretical analysis of
shear horizontal surface Love waves has been performed on
rotated Y-cut quartz crystal |374| and on an isotropic
substrate with a piezoelectric layer [379]. The dispersion
equation has been derived and analyzed for surface Love
waves propagating in a semi-infinite piezoelectric substrate
on which an isotropic solid dielectric layer has been
deposited [380]. The propagation characteristics of Love
waves 1n a periodically-layered structure have been
investigated [381]; thegrowth rates of waves depend on
nonlinearly on the number of periods in the structure. The
intluence of such parameters as a blasing electric field

and a temperature 1lncrement has been considered on the
propagaticn of transverse Love surface waves [382]. Morocha
[383] has studied the propagation of pure transverse waves
along an interface between two piezoelectric media; he also
dealt with the propagation of gap waves in an asymmetrical
parallel-plate waveguide.



STONELEY AND LAMB WAVES. Stoneley waves propagate at a
plane interface between two perfectly bonded, elastic half-
space and Lamb waves propagate in thin layers. The
fundamental characteristics of a Stoneley surface acoustic
wave generated by an electrode transducer have been calcula-
t=d at the interface of a piezoelectric and nonconducting
ligquid [384] The effect of piezoelectric moduli and that
of electrical boundary conditions have been investigated on
the existence, velocity and kinematic properties of Stcneley
s at the interface of two piezoelectric media [383]

.
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TRAPPING. Due to its excellent features, the
ergy trapping has been increasingly utilized in
n of piezoelectric devices. Milsom zand his <o
have developed a three-dimerci 21 modcemassns»
of piezoelectric rlated bars, Lncluding both
3 and 2lzotrical shorting effects of the elect
esalts were 1n good agreement with experiments.
0 found that energy trapping varies with the cross-
ional aspect ratio of the bar. An analysis has been

cf a plezoelectric plate driven into thickness-
nsional trapped energy vibrations by the application of
v ltaae to strip electrodes and radiating into an adjacent
uid L389] All previous treatments ignored radiation

to the surrounding fluid. Tiersten and his co~workers
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ency excursions at AT-~cut and SC-cut guartz cryvstal

, analyzed thickness-extensional trapped energy modes
thin piezoelectric film onsilicon structure [391], and
tudied the change in orientation of a zero—temperature
sontourad SC-cut quartz crystal with the radius of th

ccentour [392] A simple thecoretical model of traoped

nergy resonators with ~ir~ular electrodes +that wvitioc
monoclinic crystal plates naw recen.iy veon proposad for
thickness-wave solutions in the vicinity of cutoff freguen-
cies [395], as has a model with rectangular electrodes

for analyzing the effets of tab electrodes on an AT-cut
plate [2%6]. A simple method has been provided for
predicting frequencies of energy trapped modes of thickness
vikbrations in plezoelectric rectangular and circular plates
M397]. peach F’QUJ has Jdetermined the design characteristics
of AT-cut and SC-cut guartz crystal trapped/energy reso-
nat-rs by a variational method. Fecently, Détaint et al.]399(

v
4]. They dealt with the transient thermally-induced
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Anavtical investigations concerning the strength ard failure
0of piezoelectric materials are of recent origin, and, in
fact, began withthe discovery and manufacturing of piczo-
ceramics. Among investigations on the use of metnsds of

el oelasticity, Parton and Kudrvavtsev r4f ] nhave

de ired the fracture of thormoplﬁzoelectrlv materials, have
studiad the crack growth of arbitrary form, and have
deternmined the condition of crack propagation in certain
cases. A method has bean proposed for determining the
conjugate mechanical and elrctrical fields in a pieszoeler-tnc
medium weakened by a curvilinear tunnel cut, inclv<"-73 a
numerical example [40‘1 The intensity factore .- :Ta2cirical
and mechanical quantities have been calcrl-2za for the
longitudinal shear of a piezoelectric nwedium with 2z tun
notch [402]. Kuz'menko, Pisarenko end Chushko [102] have
predicted the fetigue life (endurance) o [ ...~ ar=nic
elements from the characteristics of a subcritical crack
growth; the lower bound of endurance given ky the orediction
agrees well with the measured data. Devmlopﬂeqt oz
microcracks has been considered in a piezoceramic ralf-plane
wWith two boundary electrodes r4041. Further, Pa'w on [405]
nas contrifput=d on the subject as an extension of his
orevious work [406]. Purely experimental studies have been
dirzcted toward the determination of the fracture toughn=ss
[407,408] and fatigue failure [409] of piezoceranmics.

£— METH2DE OF NUMERITZAL SOLUTIONS

Among the methods of numerical analysis in continuum physics
the finite element and boundary element methods have long
ceen used for solutions of elastodynamic problems. The

literature in this area has grown enormously since the
evolution of digital computers. However, only in the last
few years, the finite element method began to be used to
solve dynamic problems of piezoelectric crystals. Allik
and Hughes [410] and Oden and Kelley [411] have described
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the finite element method as a universal numerical method
of piezoelectric analysis. Using the finite element method
Naillon and his coleagues [}12,413] have thoroughly described
an analysis of piezoelectric structures, including some
applications. Kovalev and his colleagues [414] have
introduced an approximate method of numerical soclutions for
problems of electroelasticity on the basis of variational-
difference methods, of which the finite element method is =z
modification. The finite element method has also been used
to calculate the linear and nonlinear propagation modes in
a piezoelectric surface wave guide [415,416]. A numerical
approach based on the finite element method has been
described for the analysis of periodic waveguides for
acoustic waves and, in particular, of propagation character-
istics of SH surface waves and Rayleigh waves [417]. The
vibrations of piezoelectric bar have been simulated by

use of a finite element method [418]. Xiaogi and Quichang
[419] have developed a finite element-equivalent circuit
method to compute the vibration and acoustic radiation of

a plezoelectric composite rod. The dynamic influence on
the flexible cantilever beam with distributed active piezo-
electric damper has been considered by the finite element
methou [420]. Besides, a staircase model has been presented
for the analysis ¢f a tapered piezoelectric bar [421]; the
theoretical and experimental results have been reported.
Again, using the finite element method, the vibrational
mode spectrum in an axisymmetric piezoelectric disk has
been characterized [422,423]. Karnaukhov and Kozlov [424]
have described the method for an investigation of the
electromechanical behavior of thermo-electro-viscoelastic
solids of revolution under harmonic loading. They have
also performed numerical calculations for a piezoceramic
viscoelastic cylinder with radial polarization. Moreover,
the addition of piezoelectric properties to structural
finite element programs has been achieved by matrix
manipulations [425,426]. The finite element method has
been reviewed for electroelastic vibration and static
analyses of piezoelectric structural elements [427].

The method of Laplace transforms, the method of z-transforms
and the method of fast Fourier transforms [428—431] have
been applied to solutions of dynamic problems of piezo-
electric crystals. By the method of Laplace transforms,
zhang and his colleagues [432] have obtained the complete
analytic solutions of the transient behavior of a trans-
mitting thickness-mode piezoelectric infinite plate. They
gave the physical interpretations of complete solutions as
well., By the method of z-transforms, rapid solutions have




been proposed to the transient response of piezoelectric
elements [433]. By the method of fast Fourier transforms,
the transient response of a piezoelectric cylinder [193
and sphere [434] has been treated. Polak et al. 435
have discussed mathematical and computational aspects of
device modelling that may be applied to the analysis of
rpiezoelectric elements.

The boundary element method has been described for solutions
of piezoelectric problems [436], although specific problems
remain to be solved. The finite element method has been
applied to electric and magnetic field problems, including

a number of applications [437]. A brief account of recent
algorithms has been given for electromagnetic computation

in two and three dimensions and at low frequencies [438];
this and the finite element method can be readily extended
for solutions of some dynamic problems of piezoelectric
crystals.

7. CONCLUSIONS

The aim of this paper 1is to review the open literature
related to the dynamic applications of piezoelectric crystals
since 1983. Representative work, both theoretical and
experimental, has been surveyed that deal with vibrations

of rods, plates, disks, shells and laminae; with bulk waves,
surface acoustic waves, energy trapping, fatigue and
fracture; and with methods of numerical solutions. This
review should be of value to readers seeking guidance; it
also provides a challenge to interdisciplinary researchers
in the field of piezoelectricity.

As is apparent from the representative literature cited, a
considerable amount of valuable works has been done on

waves and vibrations in piezoelectric crystals. However,
most of works has been devoted to analytical solutions of
specific problems using conventional numerical methods;
little of this analytical work has experimental corrobora-
tion ; very little work relates only to experiments and
basic research. Analytical and experimental works, including
applications, that deserve special attention haveto do with
polar and nonlocal piezoelectric materials and plezoelectric
powders and alike [439]. Efforts are needed to develop a
relativistic and stochastic approach to dynamic problems

of as well as to the thermodynamics and stability of
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plezoelectric crystals [440—442]. Investigations are
anticipated to address more challenging problems of
inelastic and nonlinear behavior, fracture, reliability andg
endurance of piezoceramics. Moreover, due to their computa-
tional efficiency, the finite element method has to be
applied extensively to dynamic problems of piezoelectric
crystals, as has the boundary element method evan though

no specific applications are yet available. Lastly, there
still exists a need for experimental works to determine

some constitutional behavior and sensivity of piezoelectric
materials and to corroborate theoretical results. In wiew
of its current trend in technology, opportunities appear to
be plentiful and potentially fruitful for future work on the
subject.

This is an extended version of therecent survey paper [443]
with an updated bibliography.
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CHAPTER 2
CERTAIN INTEGRAL AND DIFFERENTIAL TYPES OF
VARIATIONAL PRINCIPLES IN NONLINEAR PIEZOELECTRICITY

ABSTRACT

Various forms of variational principles are developed so as
to generate, as Euler-Lagrange equations, the fundamental
differential equations of nonlinear piezoelectricity. To
begin with, Hamilton's principle is rigorously applied to
the notion of an electroelastic solid with small piezocelec-
tric coupling, and an associated variational principle is
readily derived. This two-field variational princigle
vields some of the fundamental equations of the piezoelec-
tr.c solid, and it contains the remaining fundemental
equations as its constraints. Then, by use of the disloca-
tion potentials and Lagrange undetermined multipliers
(Friedrichs's transformation), the variational principle

is augmented for the motion of piezoelectric solid region
vith an internal surface of discontinuity. Likewise, to
incorporate the constraints into the two-field variational
principle, Friedrichs's transformation is again applied,
and hence a unified variational principle is shown to pro-

p7}

duces the fundamental equations of electroelastic solid with
swnall piezoelectric coupling. Further, similar variational
principles are forwulated for the incremental motion of
piezcelectric solid that is initially under stress.

1= INTRODUCTION

Ir. De2scribing the physical kehavior of piezoelectric solid
media, the elastic field 1s taken to be dynamic and the
electric field to be static, and both the fields are con-
sidered to be linear with respect to electromagnetic prop-
igation phenomena. This linear quasi-static approximation
provides an extremely accurate description of the propaga-
tion of small-amplitude waves in, and the small vibrations
of, the solid media. However, the linear approximation
becomes inadeguate in high amplitudes, and hence should be
taken 1nto account the intrinsic nonlinearity and/or the
induced nonlinearity due to the peculiarity and the defor-

mation of solid media, respectively. In fact, the nonlinear
phenomena were already demonstrated experimentally and
investigated analytically for some dynamic problems of
piezoelaectric solids and especially quartz crystals ([l]
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[2], and references therein). In guartz, which is probably
the most widely used crystal, the electromechanical coupling,
that is, the piezoelectric effect is weak, and hence, the
electrical behavior is taken to be linear while all the elastic
nonlinearities are included. On the other hand, the presence of initial
stresses may significantly affect the dynamic characteristics of quartz
crystals, and accordingly the linear approximation should be modified
[3]. In this study, various forms of variatiocnal principles
are derived for the motion of an electroelastic solid with
small piezoelectric coupling (e.g., quartz) and that of a
plezoelectric solid subjected to initial stresses.

The governing equations for the motion of piezoelectric

solid are constructed on the basis of the general principles
of electroelasticity. They consist of the divergence (field)
equations, the constitutive relations, the gradient equations
and the appropriate boundary and initial conditions. Of
these fundamental equations, the field equations are origi-
nally stated in global form through the integral expressions
of mechanical and electrical balance laws. The global field
eguations are essential and general due to their physical
nature, and their local (differential) counterparts can be
stated under some regularity and local differentiability
conditions. The constitutive relations appropriately express
the peculiari+ties of piezoelectric solid, and they are, in
general, stated in differential form under certain rules and
invariant regquirements. However, these relations should be
stated in integral {(global) form for the case of a nonlocal
piezoelectric solid in which the nature of long~ra:ge inter-
molecular forces 1is taken into account. The rest of the
fundamental equations are always given in differential form.

3esides their global and local forms, the fundamental equa-
tions of pilezoelectric solid can be alternatively expressed
in variational form by means of the stationarity of appro-
priate functionals. In stating the fundamental equations,
all the three forms are, of course, eguivalent, and interde-
pendent, and they can be deduced from one another. From the
standpoint of computation, the global form is inappropriate,
the differential form is widely used in analyzing the motion
of piezoelectric solid, and the variational form has certain
advantages over the others. In the latter form, the funda-
mental equations are generated as the Euler-Lagrange egua-
tions of variational principles which may be contrived in
certaliln cases. In order to derive a variational principle,
a general principle of physics (e.g., Hamilton's principle
and the principle of virtual work) 1is often taken as a
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starting point in lieu of experienced quesswork. Of varia-
tional principles, an integral variational princigple (e.gy.,
Hamilton's principle) admits an explicit functional, wherecas
a differential variational principle (e.g., D'Alembert
principle) denies it. Even Hamilton's principle becomes a
differential variational principle for the case when the
nonconservative forces do exist. On the other hand, the
principle of virtual work and the like, by definition, cannot
have explicit functionals due to their postulated statements
in terms of infinitesimals called virtual displacements and
virtual work. The differential variational principles are
especially valuable from the standpoint of succintly
summarizing the fundamental equations, deducing lower order
field equations and obtaining approximate direct solutions.
In addition to these features, the integral variational
principles are useful in finding bounds formulae and in
studying existence and convergence proofs of solutions. 1In
closing, the differential variational principles can be
contrived almost in all cases, whereas the integral varia-
tional principles are generally applicable to the linear and
self-adjoint fundamental equations, and their existence can
be tested by use of Fréchet derivatives [4], [5].

;n deriving variational principles, Hamilton's principle [6],
L7], which was originally derived for a discrete mechanical
systen and later extended by Kirchhoff [8] to a continuumn,
was used successfully in dynamics, solid and fluid mechanics,
and piezoelectricity. The application of this principle to

a continuous medium always leads to a variational principle
that generates only the field equations and the associated
natural boundary conditions, and hence it implements the
remaining fundamental equations of a medium as its con-
straints. The constraint(subsidiary) conditions make diffi-
cult a free and simple choice of approximating (trial or
coordinate) functions in computation, and accordingly, in
nany instances, it is desirable to remove them. There exists
a numper of ways for the inclusion of constraint conditions
into the wvariational principle, and a simple way of imple-
menting is to use Friedrichs's transformation [9]—[11].

Other noteworthy ways to be used for the removal of con-
straints are the adjoint equation method or the method of the
mirror equation advocated by Morse and Feschbach [12] in
continuum physics, the quasi-variational method of Biot

[13] in thermodynamics, the restricted variational method

or the method of local potential put forward by Rosen [14],
and Glansdorff and Prigogine [15], and the method of
convolution due to Gurtin [16] in elasticity. Among those,
Friedrichs's transformation is applicable to holonomic as
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well as nonholonomic conditions as shown by Lanczos [11],
and it is particularly valuable and of wide use in removing
constraints in both elasticity and electroelasticity (e.g.,
[17]—[19]). In fact, due to its versatility and clarity in
application, Friedrichs's transformation is also used herein
in modifying Hamilton's principle into the unifi=d varia-
tional principles of nonlinear piezoelectricity.

In piezoelectricity, Tiersten and Mindlin [20], Tiersten [21],
[22], EerNisse [23],[24] and Holland and EerNisse [25]-[27]
primarily developed certain variational principles that were
elaborated in |22}, [28]. Starting with Hamilton's princi-
ple, Tiersten [21] derived a two-field variational principle,
and then he modified it through Lagrange undetermined multi-
pliers in order to obtain an extended variational principle.
This variational principle yields, as its Euler-Lagrange
equations, the field equations and the associated boundary
conditions as well as the pertinent jump conditions for a
piezoelectric bounded region containing an internal surface
of discontinuity. Also, Vekovishcheva [29] established, by
experienced guesswork, a few variational principles in the
theory of electroelasticity, as did the author [30],[31].
Especially, the initial and jump conditions were excluded

in [29],[31], and these conditions were taken into account
by the author [32] who was guided by the work [18]. The
variational principles in [32] generate all the fundamental
equations of piezoelectricity, analogous to the variational
principles of Hu-Washizu and Hellinger-Prange-Reissner [33]
in elasticity. Further, in the light of Gurtin's method of
convolution [34], another variational principle with no
constraints was formulated by Sandhu and Pister [35].

To include thermal effect, Mindlin [36] discussed a varia-
tional principle in thermopiezoelectricity by extending
Biot's [3ﬂ'variational principle for the thermoelastic case.
Nowacki [38] and recently Chandrasekharaiah [39] formulated
some variaticnal principles with constraints through
Hamilton's principle. The unconstrained variational princi-
ples were derived by the author [40]-[42] who followed both
the methodology described in [8] and [34].  JMorecver,
Kudriavtsev, Parton, and Rakitin [43] established a condition
that was the generalization of the fracture variational
principle in piezoelectric solids, as did Parton [44] and

the author [45]. Lastly, mention should be made of the
variational principles for a piezoelectric solid under ini-
tial stresses [46],[47] and those for an electroelastic solid
with small piezoelectric coupling [48],[49]. These varia-
tional principles were obtained by use of either Hamilton's
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wvle or the principle of virtual work together with
‘vichs's transformation. As regards the relevant

s

:ture on variational principles in piezoelectricity,

v zader may be referred to the list of references in [2],

J41].

~zt follows, the fundamental eqguations are recorded for

Linear electroelastic solid with small piezoelectric

"-ng in the next section. Hamilton's principle 1is stated

-2 nonlirear electroelastic solid, and then by perform-
suitable variations and integrations by parts, a two-
variational principle is derived that yields the field

T .ons and the associated natural boundary conditions,

-tion 3 . By use of the dislocation potentials and
~ge undetermined multipliers, Hamilton's principle 1is

7ied in Secticn 4, and hence an extended variational

~ole is estaklished for the electroelastic region with

“ternal surface of discontinuity. The two-field vari-

:1 principle of Section 3 1is similarly augmented

-~

principle i obtained in Section S. This variational

-_vle is show: to generate the fundamental equations
--linear elec roelastic solids. loreover, by comparing
“rinciples decived, some variational principles are

-ed for a p.2zoelectric solid subjected to initial
ses, in Section 6 . The last ssction is devoted to
21 cases, corcluding remarks and further needs of
-ch.

-nat *nrcughsut the paper, the usual indicial notatio
z1lv us23 in a three-dimensional (3-D) Euclidean space
- this space, the X.- system is identified with a fixed,

-nand=4 svst :m of Cartesian convected (intrinsic)
~nates. Tinstein's summation convention is implied over
:peated Lati:. indices, unless they are put within
~neses, A comma stands for partial differentiation
respect to te indicated space coordinate and a super-
Aot for timr differentiation. Also, an asterisk
s prescribed guantities, and a boldface bracket indi-
the juro of an enclosed guantity across a surface of
-~inuity. The symbol B(t) refers to a regular, finite
:nded region B contained in £ at time t, B denotes the
-= 0of the region B with its boundary surface 3B, and
~resents the Cartesian product of the region B and
2 integral Ts= [to,t ). As regards new quantities,
:re essentially défined whenever they first appear.
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2 - SUMMARY OF NONLINEAR PIEZOELECTRIC EQUATIONS

In this section, the fundamental nonlinear equations of

an electroelastic solid with small piezoelectric coupling
are stated in differential form. In accordance with the
small piezoelectric coupling, the nonlinear elastic terms
are included only, and the electric and electroelastic terms
are kept linear. The fundamental equations were derived

in [1], [50], [51], and they are expressed herein for
completeness and convenlence.

In the space Z, let 3+3B stand for an arbitrary, simply-
connected, finite and bounded region of the electroelastic
solid [52], and also let the region B be referred to by a
fixed, right-handed system of Cartesian convected coordi-
nates X, . The entire boundary surface 3B of B consists of
the complementary regular subsurfaces (3B_,33 ) or (33 _, )
and tne unit outward vector normal to 3B " is . denoteg
by n.. Further, let BXT represent the domain of definitions
for ' the functions (xi,t).

o]

Now, the 3-D fundamental eguations are recorded as the
followinyg divergence equations:

t.. .=o2a. in BXT (la)

13,1 J

+ = L L+T . L= gL . 1

®5 5 Tl] le lk( ]K+uj,K) {1b)
eijijk: in BXT (1c)

5. .= 0 in BXT (2)

with the definitions

tij asymmetric Lagrangian stress tensor
Tij symmetric Kirchhoff stress tensor
ij:Tikuj,k symmetric lMaxwell electrostatic stress
tensor

p density of the undeformed body

ay Lagrangian acceleration vector (=Ui)
vy mechanical displacement vector

6ij Yronecker delta

Di electric displacement vector

e permutation symbol.
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Dguation (1) stands for the nonlinear stress equations of
motion and (2) for the linear charge equation of electro-
statics.

Graiient eguations:

S..=1/2(u..+u. .+u .U .) in BYT (3a
1] 4] J,1 kK,1 K,3J )
S..=e,.+1/2(e, .+w. _.) (e, .-w . 3b
ij 7ij /21 ki Kl)( kJ k]) (30)
e..=1/2(u. .+u. .),w,.=1/2(u. .-u. .) (3c)
ij i,3 3,113 i,j 3.1
and
E{== ¢, 1in BXT (4)
with the definitions
Sij Lazrangian strain tensor
e linear strain tensor
!
w rotation tensor
13
: electric potential
Ei wasi-static electric field vector
Exuation (3) represents the nonlinear strain-mechanical
Zlisplacemnent ralations and (4) the linear electric field-
electric potential relations.

Too=12 (22 2E iy By (5)
ij 38, 58S
ij ji
D, = 2B in BXT (6)
1 S E .
1
where H=U-E.D. 1s electric enthalpy; and U is potential
enerygy c}n@%t?. A quartic form of the electric enthalpy is
recorded in the form.
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H=1/2Cijklsijskl—1/ZcijEiEj—cijkEkSij

1/6C, . S

ijklmn ijsklsmn

+ 1/24C,

1jklmnrssijsklsmnsrs (7)

whe .. . ..

here Cl]kl’ Cljklmn’ Cljklmnrs
order, and fourth-order elastic constants; respectively,
Cijk is pilezoelectric strain constants; and Ciy 1is

dielectric permittivity.

are second-order, third-

Of these constants, the elastic constants refer to free
constants since they describe the strain-stress relations
when the electric field is absent, while the remaining
constants refer to clamped constants [53]. Further, the

usual symmetry relations hold for the material constants,
namely,

C = = 0 = .=C ..
“i5%17 C5ix17 Sx1i97 Ci5xT Cikgr C137Csi

Ciik1mn” Cidmnk1™ “x1i3mn” Siikimn (8)

~

bijklmnrsz Cklijmnrs: Cmnijklrs: Crsijklmn= Cjiklmnrs

In view of (5)-(7), the constitutive eguations for the
symmetric stress tensor and the electric displacement vector
are expressed in respective forms:

73571 5%5%% 1713k 2 Cisk1mnSk15mn

v 176 Cijklmnrssklsmnsrs

D.=

~ o : = a
: cijksjk+tij“j’ in BXT {2)

Boundary conditions:

*—n.t..=t* - L . . = (T 1
t.l njtjl tl n]Tjk(5lk+ul,k) 0 on 3Btk (10)
u.-u* =0 on 3B XT (11)

i V1 u
g*-n.D.=0 on 233 XT (12)

i1 o
¢=¢*%=0 on 3B . XT (13)

¢
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where t.=n.t..
1 731
vector normal to §B; and oi=niDi is the surface charye;

is the stress vector; ni i35 the unit outwarsd

where the stresses are taken to be prescribed on 3B,, the
mechanical displacements on aBu, the surface charge on
chand the electric potential on 5B .

¢

Initial conditions:

u. (x.,t, )= v*¥{x.)=0

S R t in B(t,) (14)

’ - * C =

ui(xj,to) wi(xj) 0

and
T I e = ]

¢(xi,to) Y (Ai) 0 in B(tO) (15)
Jump conditions:

. -, . - : - c

,i[tij] ’i[Tik(Sjl<+uj,k)]+tj 0 on sxT [u.,}=0 (15)
ana

',i[Di]=Q,[5]=O on SXT (17)

whare t% is the applied prescribed surface traction; Q is
the electric surface charge density; S is the material sur-
face of discontinuity. In these equations, the surface
traction and charce density with zero intensity are consid-
ered, that is, t%=Q=O, the conventional notation [xj] for
(xz_xz) is introduced, and also V; denotes the unit normal
vector directed from the (-) to the (+) side of S.

Egquations (1)-(15) completely describe the nonlinear behavior
of nonlocal, nonpolar, and nonrelativistic elecrcelastic
solid with small piezoelectric coupling, and (16) and (17)
arise at a material surface of discontinuity. The existence
conditions have yet to be established in solutions of the
initial mixed boundary value problems defined by the funda-
mental equations (1)-(15). UWNevertheless, the boundary and
initial conditions (l0)})-(15) were shown to be sufficient for
the uniqueness 1in solutions of the fully linearized problems
of fundamental equations [22].
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3- THE APPLICATION OF HAMILTON'S PRINCIPLE TO THE
ELECTROELASTIC SOLID

In piezoelectricity, Hamilton's principle was rigorously
expressed, and then the associated linear variational prin-
ciples were readily deduced from it in [22]. The treatment
was restricted only to the nonrelativistic case, and also
the polar as well as nonlocal effects were excluded.
Likewise, this principle is now applied and an associated
variational principle is derived for an electroelastic solid
with small piezoelectric coupling.

Hamilton's principle states that the action integral is
stationary between two instants of time to and tl’ namely

L= GITLdt+ fT Swdt=0 (18)

where L is the Lagrangian function and 6% is the virtual
work done by external mechanical and electrical forces

for all the admissipnle motions of electroelastic solid,
that is, the motions which are compatible with their given
constraint conditions and of which the end points are taken
to be coterminus with those of the actual motion. In (18},
the Lagrangian function is defined by

L =IBEK-H(Si ,Ei)JdV (19)

b
for the regular region of electroelastic sclid B+3B with
its entire boundary surface 3B, and the kinetic energy
density K is expressed by

K= 1/2 pu UL {20)

and the electric enthalpy by (5)=-(7). The virtual work per
unit area done by the prescribed surface tractions t; and
surface charge o* is given by

Tl = * . *5 2 1
514 (tléul+c $)as (21)

.
‘3B

After inserting (19)-(21) into (13), one arrives at the
variational equation of the form

£L= thSIB[l/Zpuiui—H(Sij,Ei)]oV

+/ pltieu +o*54)ds 1de=0 (22)
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where all variations vanish at t=tg and t=ty. Then, by
carrying out the indicated variations, utilizing the fact
that the operation of variation commutes with that of differ-
entiation and integrating by partswith respect to time, this
equation takes the form

3= s At [ (-pa.8u,-1,.6S5..+D, SE,)dV
T 5 1 1 1] 13 i1

r I+ f * * - 2
+JT Ot‘QB(tisui+o §¢)ds=0 (23)

tlere, the variations are assumed to obey the axiom of
conservation cof mass, nanely,

§ (pdV) =0 (24)

and the constraint conditions on thew, the constitutive
egquations (5) and (6) are employed, and the symmetry of
Kirchhoff stress tensor is considered. ilow, by substituting
the nonlinear strain-mechanical displacement relations (3)

and the linear electric field-electric potential relations
(4) into (23) and applying the divergence theorem for the
regular region B+33, and then combining terms in the surface
ani volume integrals, one finally obtains a two-field varia-
ticonal principle as
5E, AL = T C8uL+L, 8%
3 .TdtJ’B(LU U L,8%)dv
roAaf * x Sa) =
+‘T“taB(L1j5uj+L2“@) 0 (25a)
with the admissible state A1={ ui,ﬁ'and the definitions
.= £ . .- pa. 25b
Llj | il jk+uj,k)"l paj ( )
L, =D, . {25c)
2 i,1
¥ =p¥en, 7, S, +u. 254
Ll] «_] nl lk( jk uj,k) ( 5a)
*
* =(2 -n ). 25e
L2 (= r*Dl) ( )

In deriving this variational principle, the condition

Su.=%54=0 (26)
i
n B(t ) and B{t,) 1s imposed. In the variational principle
®since the variations éu. and S$of the adwissible
A, are arbitrary and indépendent inside the volume B
on %he boundary surface 3B, one has the nonlinear stress
ations of motion (1}, the linear charge equation of
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electrostatics (2) and the natural boundary conditions (10)-
(13). Conversely, if these equations are met, the varia-
tional principle (25) is evidently satisfied. The admissible
state A, of (25) is subjected to the remaining fundanental
eguations of electroelastic s0lid and the condition (25) as
its constraints.

The constrained variational principle (2%) can be used in
solving approximately the boundary-value problems defined
by the fundamental equations of nonlinear =slectroelastic
solid, provided that the initial conditions (14) and (13)
may be left out of account by a variety of numerical tech-
niques (e.g., [54],[55]). However, any approximating
solution must satisfy the constraints of (25); this feature
of Hamilton's principle was discussed very thoroughly by
Tiersten [18]. Further, it is of interest to note that the
two-field variational principle (25} can be extracted from
the principle of virtual work [49], and it contains somne

of earliesr variational principles of [21], [22], [25], [30]-
[32],[47] as special cases whe the nonlinear terms are
discarcded.

ATICONAL PRINCIPLE FOR DISCONTINUCUS ELECTROELASTIC

"
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Novw, paralleling to the derivation of the two-field wvari-
ational principle in the previous section, a variational
principle is deduced from Hamilton's principle for a region
B of nonlinear electroelastic solid, intersected by a fixed
surface of diccontinuity S. This internal surface of
discontinuity splits the bounded and finite region B+3B
with its entire boundary surface 3B, and 2ach region is
labeled by a(a=1,2). The region B, is bounded by the
boundary surface 33 _and S, and hence, 33,V 852:3B and
3B.N33,=0. Let the mechanical displaceménts and the
2l&ctric potential undergo a jump across the discontinuity
. Then applying the global laws of balance pos-

n electrozlastodynamics and using the generalized
s5 theorem fc a field x., nanely,

i
2 (1)
i

3
tulated i
Green-5Gau
) 3S (27)

)"‘\'

. {
J vy, .dVs= .x.as=J v, .
. ¥ av Ja' \)lxl’)o S 1(Xl

o obtains the local balance of laws (1) and (2) and also
Jurnp conditions (16) and (17). Yere, the exponent a is
ed to designate the region B+ 3D . On the other hand,
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+f 1e j: *(5")5‘(31)
T %= ap u:l(Llj ¥y
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(n

jod]

jrange maltiplizrs

ted variations in (20), all the vari-
an.'! those of Lagrange mnultiplier
e roWhers except at t=t  and t, where the
usaal condition (24) of Hamilton's principle is imposead.

to be determinsd,
d)

a1

izw, carrying cout the variations in a way anologous to thos=
tn {22) anad apnlying the generalized Green-Gauss thecorem (27)
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which is valid only up to and not across the surface of
discontinuity S, (30)takes the form

_sfin )
5[2_05Aa;

. . (2),~...{2)
+7 otfsszj+virik (6jk+uj’k)]ouj

Cvayw ptl)d (1) (2) _ (1)
(x+v, Dy Y&¢ *8x; (uy Uy )
san (o) -s )y S as=o (322)
. , . - a .
Yere, the volumetric and surface variaticns Cug ) and
5¢(ﬂ$ are free in the region B, and on tne 1 surfaces
3B, and S, and the variations &Xj and ¢x are arbitrary on the
discontinuity surface S. Thus, for (32) to be satisfied in
all these adriissible variations, the integrand of each vari-
ation must vanish and this gives the 2ivergence equations
{1) and (2) and the natural boundary conditions (10) and
{12) for each region 5,%334 namely
() (%) Sy ()
L= N = =0; a= 2 3
Llj L2 O,Llj L2 0 1, (33)
and the jump conditions (16) and (17) at their interface,
and also the conditions of the form
(=) (2)
A.o+v,. 1., 8. +u. = 34)
31 1k ( Tk uj,k) 0 (
a
2+ v.D.()zo (35)
i7i
By solving (34) and (35) for . and » , the Lagrange mul-
tipliers are identified as tractions and surface charge in
their nost appropriate form
2
_ 2 {a) {a)
%j— 1/2 vy qEITik (Ojk“'uj,k)r
el
v==1/2 v, = ol* .16)
i o=l 1

Then, the substitution of {36) into (30) results in an aug-
mented variational principle as follows:
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SL (n v : (1) ¢ (1) () o, (1)) o
\52{“2" o dt m;:fBa(Llj Guj + Ly, 5 )av
(v) (%)
+ dt ,\‘,;1 laBa (Lij al
* () () -
f r T {
ML ICATPEVEITRS | ik(sjk+uj,k)]
. (6u§l)+5 (2))
_ (1) (1)
[STik (6jk+u],k)
2 2
#5t{) (s k+u§,;)][ul]
" (6¢(1)+6¢(2))[Di]
(07450 {")) [4] 1as=0 (37a)
Tn a compact form, it is
Ly : () = (o)« (2)
5[2{1a; =/-dt aglfééa(l/Zp a; ooy
5%y av
+dea(t§<“)éu£a)+a*(“)5¢(a))ds]
- - o o (B ()
—u,TdtJSl/2vit(tij *ei50) [uj]
» {V+p{P)[e]} as=0 (37b)
with the admissible state
C_ ) ) (0 () ()
= fuy eyt tij ) D /Dy } (37¢)

which leads to the divergence equations and the natural
boundary conditions for each region and the jump conditions
as its Euler-Lagrange equations. The differential type of
variational principle (37a) and in particular its form (37b)
is very useful for approximation, and also it covers some
of earlier_variational principles for the linear case

{e.qg., [22],[Al] and references therein). 1In deriving (37),
the inclusion of the jump conditions through Friedrichs's
transformation is a classical example of implementing
subsidiary conditions in a variational principle[ld],[ll].
However, there is a glight difference between this and the
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classical one, that is, the constraint conditions (16) and
(17) are boundary constraints and A, and » are functions

on the discontinuity surface, while'the constraint conditions
treated in the classical way are either domain or isoperimetric
constraints. Moreover, to introduce a modified Lagrangian
(30) in lieu of the original Lagrangian (28) is also
physically plausible, that is to say, the modification of
the Lagrangian by the dislocation potentials is not merely

a matter of mathematical method but has a very real physical
significance. The modification of the Lagrangian on account
of Friedrichs's transformation represents the Lagrangian
that is responsible for the maintenance of the given con-
straint conditions.

5 - VARIATIONAL PRINCIPLES FOR NONLINEAR PIEZOELECTRICITY

In the previous sections, three variational principles (25},
(29), and (37) of nonlinear piezoelectricity are deduced
from Hamilton's principle, and they impose certain con-
straint conditions upon their admissible states. In general,
neither a pricri satisfaction of such conditions nor by
introducing additional unknowns in terms of Lagrange
multipliers is desirable in computation. Thus, it 1is
preferable to use variational principles with as few con-
straints as possible, as sugc=asted by computational economy.
Of the constraints of varirstional principles, the jump
conditions (16) and (17) are already relaxed in (37) with
the help of Friedrichs's transformation. Now, the
constraint conditions of (25) are similarly removed, and
then a unified variational principle is derived for the
motion of an electroelastic solid with small piezoelectric
coupling.

To incorporate its constraint conditions (3)-(6), (11),
and (13) into the two-field variational principle (25),
the dislocation potentials are introduced as follows:

Bri=Jg xij[sij—1/2(ui,j+uj,i+uk,iuk,j)]dv (38a)
Moo= . (E. . (38b
ta2=lguy (Bivs )av 8b)

* *yas (38¢)
A33=f33 Xi(ui_ui)d5+faB,”(¢-¢ ) c

u ¢
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where \i"“i’ \i’ and ¢ are the Lagrange multipliers to be
determifdd.’ Thé dislocation potentials (38) are added to

(22) with the result

5 = [ — )] A
o£3 ,Tdt.B(l/zpuiu.l HYdv

* *
f it . . A
+'T d IBB (t16u1+0 §4)ds

Then, as in (22), all the indicated variations in this
equation are treated, and a variational equation is
obtained in the form
_ aH 3H ¢
1/23a- * 35..0%%45
ij ji

§(y=r7 atrg[-pa, suy

+
[N
tr

+
N
3
[o))
ot
-
_—
N
.t
I pn)
W
-
|
[
N
o
o
’_J.
+
[l

.-
*

s aer, [fu(e-¢ ) +uisldas=o (40)

)

2 sam> way as 1in (23), the Green-Gauss theorem

ne conditions (24) and (28) are imposed, and

s that belong to a certain variation are

ad., Thus, one finally obtains the fundamental

eguations of electroelastic solid and the Lagrange multi-

pliers identified by

ol
t
m

D~
Iat
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PRI .= =D.,A.=t.=n_.t.. =05 = n.0, (51)
173 i3 M1 ST T e B e ivi N
since the volumetric and surface variations <f Lagrange
multipliers and field variables are free in -“he recicn 3
and on the surface portions of its boundary zurfacs B B

substituting (41) into (40), the unified wvariational princi-
ple is found in the form

cLAn} = a LU ¢+L. . ¢
v£3\A§ fop dtrglly dJ+L §¢+L S

£ 13
+f_ atrs., L*8t.a3S
T 1
Q
+f_ étr L*¥5¢a
T ¢B 2 ¢cS
a
+f &ef._ K¥zcas=0 (42)
T o B
¢
with “he admissible state ha= ‘u.,S..,7T..,%t.5%,9,2.,D.
= i'Tiyt 157 T4 T4
and the definitions (25b)-(25e) and +he denctztions =s
«H nH -~
Ll]= T 4=1/2 (fs + ;S ) (432)
. P13 75
T =N, + == L:in)
~i i 3E. (
i
K..= 5..-1/21(u .F0L L +u, Lu. L) t3cC
ij ij 1,3 73,1 Tk,i7k,3 (23¢)
K.==(E,+% £33
i ( i ,l) { )
L. =(u,-ua* i3
Ly l) ( )
* * _
K ={¢-¢ ) (£325)
The varilational principle (42) vyields the Zundamental
ezuztions of nonlinear electrcoelastic sclid, namely,
L,.=L,=L..=K =K.=L.=0 in EXT (£32)
13 72 7ij ij i
x *
I, .=9D n 3B YT, L.=0 on 5B XT
13 A an
* R * . "
7,7 0 ade! 'c"‘,_,";;“, I(i'—O &N =3 XT {340
2 44
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as 1its Euler-Lagrange eguations, and it 1s stated below.

Variational principle: Let B+3B denote a regular, finite
and bounded region of the space E, with its piecewise
smooth boundary surface aB(=aBuLLgBt= 3B,V 3By and 3B N
3Bt:380u 3By =0) and 1its closuré B(=BU3B). Then, of a&l the
admissible states A={ui, Sij'Tij’ti;¢’U’ E;/D;} , which
satisfy the initial conditions (14} and (15) and the con-
dition (26) as well as the symmetry of stress tensor t..

and the usual continuity and differentiability conditidds of
field variables, if and only if, that admissible state A

that satisfies the nonlinear stress equations of motion (1),
the linear charge equation of electrostatics (2), the
nonlinear strain-mechanical displacement relations (3), the
electric field-electric potential relations (4), the
nonlinear constitutive equations (5) and (6), and the natural
boundary conditions (10)-(13), is determined by the vari-
ational principle

s {n }=0 (45)
3 3
of (42) as its appropriate Euler-Lagrange egquations.

In view of the virtual work defined in (21), the variational
equation (45) represents a differential type of variational
principvle in nonlinear pilezoelectricity. However, the
variational principle (45) can be readily written in a
compact form by

s ifTigftis 1 1 1
=t Ldn {20 —v("l],Ei)J av
+ T -17/2 +uLoL 4+ Su, L) av
5 le“Sl] 1'é(dl,j 3.1, 1 k,J)]u
- L+ =7
Jp Dy(Ejsr 04
+0 . . {u.-u*y4s +7_ _ t¥ u.ds
T E 1 1 JBt 1
s
R IS
oo san L 0 (46)
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Here, the functional £3 does exist and an integral type of
variational principle is indeed supplied as an alternative
description of the fundamental equations of nonlinear
piezoelectricity, and it has, of course, all the fruitful
features of classical variational principles (e.g. [11] and,
in particular, [56], [57] where a lucid discussion of the
search of variational principle was given).

D.}

On the other hand, the Legendre transformation ){(Tij, i
of the n~lectric enthalpy H(Si., E.), that 1is, the com-
plementary electric enthalpy %ay Bbe introduced as
..4D.)=17..5..-E.D.- .. E. 7
}C(le Dl) leslj ElDl H(Slj El) (47)

for the case when the Hessian of H does not vanish. Then,
inserting (47} into (45) and imposing the relations (3) and
{(4), one arrives at another variational principle in the
form

SE‘{uil‘r"lt';ilch'} =0 (48a)

with its Lagran

., T "B
- S atf u, .+ +1 +u av
T 1/27 ( v ] 4 1 7K, 1 k,j)
*
- TR+ T A + v -1
Spdtig D ¢’ldV +fT dtIBBuLi(d. Ji)dS
r r
+ ,Tdt B t.u, &S
t
. *
+ rT:tFBB 3{4-4 )dS
¢
foats *sas (48b)
* T '5860 b )

This integral tvpe of variational principle leads to the
nonlinear stress eguations of motion (1), the linear charge
equation of electrostatics (2), the constitutive eqguaticns
in the inverted form

ORI O 0 DL S o SO Pa in BXT (49)
1] YT .. 4T . 1 REDI
ij ij i

and tae boundary <onditions (10)-(13), as its appropriate
Fulwr-Lagrange oquations.
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Moreover, replacing the electric enthalp H by its guartic
version (7) in the variational principle (45), one obtains
a slightly different variational principle with the new
definitions Lij and Li of (43a) and (43b) in the form

L9797 k1% 17196k 1 2C 5k 1mn Sk 15mn
v 1/6 CijklmnrsSKI%WFrs)
Li = Dy (€545 *Ci5Ey) (50)

which leads to the constitutive equations (9).

In the unified variational principle (45), by use of the
fundamental lemma of the calculus of variations, one obtains
all the fundamental equations of nonlinear piezoelectricity,
that 1is, (1)-(6) and (10)-(13), but (lc) and the initial
conditions (14) and (15). Conversely, if the fundamental
equations except (lc), (14) and (15) are met, the variational
principle is evidently satisfied. The variational principle
can be further extended, following the method indicated by
Tiersten [181, so as to adjoin the initial conditions as
well as the jump conditions (16) and (17) into (45); the
result is a differential type of variational principle [47],

[49].

In closing, the unified variational principle (45) does
agree with and contains, as special cases, certain earlier
variational principles operating on some of the field vari-
acles (e.g., [21]-[27], [30]-[32], [47] and references cited
therein). The variational principle can be specialized to
derive several new variational principles in nonlinear pi-
ezcelectricity. ©Of these principles, the variational princi-
ple (25) operating only on the electric potential and the
mechanical displacements is recorded as
2L ‘u. . =0 (51)
1 1
and its reciorocal variational principle is expressed by
: ) HEON .
«CE Qij'rij' tir 17 Dl‘
=" dt/ L..%S.. .SE. .87 . +K.8DL)dV
T tJB (ulj Sl]+Ll El+KlJ i3*K; Dl)
*
4 r . . i K*Sg ds=0 52
e dt a Llﬁtl dS+J‘T dt 7B g ds {52)
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in the notation of (43). The reciprocal variational princi-
ple (52) is simply obtained by discarding the term involving
6ui and d¢in (45). The Euler-Lagrange equations of this
prificiple represent the divergence equations (3) and (4),
the constitutive equations (5) and (6), and the boundary
conditions (11) and (13), and the principle has the admis-
sibility conditions (1),(2),(10),(12),(14), and (15) as its
constraints. Whereas the two-field variational principle
(51) has (1),(2), (10), and (12) as its Euler-Lagrange
equations, and its admissibility conditions are (3),(6),(11),
and (13)-(15). Thus, the variational principle (52) is the
reciprocal of the variational principle (51), since the
roles of admissibility conditions and the Euler-Lagrange
equations are interchanged.

6 - VARIATIONAL PRINCIPLES FOR INCREMENTAL MOTIONS IN
PIEZOELECTRICITY

Initial stress or initial strain is a new design feature,
and their introduction may be effectively utilized to
control the performance of some piezoelectric devices.

Their presence may significantly change the dynamic behav-
ior of piezoelectric elements as revealed by many investiga-
tions (e.g., [46], [58], and in particular, [59]). Neverthe-
less, no efforts have been made to formulate the governing
equations of a piezoelectric medium under initial stress
through variational principles. Thus, this section is ad-
dressed to the derivation of variational principles for the
strained piezocelectric medium. In what follows, Hamilton's
principle is used in deriving a two-field variational
principle which generates only the divergence equations and
the associated natural boundary conditions. Then, the
variational principle is augmented by applying Friedrichs's
transformation so as to incorporate the remaining fundamental
equations of medium. Before proceeding further, the three-
dimensional fundamental egquations of strained medium are
recorded for ease of reference as follows.

In the space E, consider a regular, finite, and bounded
region B +3B of piezoelectric medium, with its boundary
surface ?B , in its initial ctate. The initial state is
taken to be self-equilibrating following a static loading in
the natural (or stress-free) state of region at time t=0.
The fundamental equations of initial state can be expressed
by the came eguations (1)-(15) when the dynamic terms are
dropped out and the guantities of this state are designated
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by a zero index (e.g., [60]). Then, by an elastic motion
superimposed upon the state B _+3B , which 1s subjected to
initial stress, the piezoelec%ricoregion acquires 1its spa-
tial state B+3B at time t=t_. For this type of incremental
motions, (23) deduced from Hamilton's principle can be
written in the form

§ L = 8y dt r. Kd4dv

6 B
0
- - =
I dth[(Tij ITLIEA D;sE;]av
- Ox . %, * _ -
+ i deaB[(ti +ti)du +o §4]ds=0 (53)

where the kinetic enerqgy is defined by
K=1/2Quiu.l (54)

the Lagrangian strain tensor S.. and the electric field vec-
1]
tor Ei by

S.=e..+1/2u in BXT (55)
i 713

A

k,i%, 3

E.=-¢ . in BXT (56)
1 ,l

the surface tractions and surface charge by

0 0
= . .=n. .. . . 7
tj nitl],t] nl(Tl]+leu],k) (57)
0= n.D. (58)

i7i

and the constitutive relations by

_ - : Ry q
Tij—cijklskl CijkEk in BXT (59)
D.=C.. S. +C..E. in BXT (60)

In the above eguations, u, is the incremental displacement
vector, rgj is the symmetric initial stress tensor, i3 is
the gymmetric incremental stress tensor, and Cijkl' Cijk’
and C.. are the material constants of piezoelectric medium.
By t] implying the usual arguments on the increments of
field variables [33] and taking intc account the stress
equations of motion and the associated boundary conditions
in the initial state, and then following closely the
procedure in (22), one reads a two-field variational
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principle as

8 L, 0) =S -pa.]éu.dav
Cs{ul } oa]] 3

0
p dt g Lln vy )

+f dthD . §¢dV

T i,i
0

*_

+f, Atf, B[tj ni(Tij+TikUj'k)]

. Su.ds
J
r *_ =
Jp dtfoo (o*-n.D,)6¢dS=0 (61)

which hasthe divergence egquations and the associated natural
boundary conditions as follows.

L§j=(rij+ Tgkuj,k)'i— b =0 in BXT (62)
L, = Dy ;=0 in BXT (63)
L?j= t; - ni(Tij+nguj,k)=o on #BXT (64)
LY = (o -n;D,) =0 on 3BXT (65)

as its EBuler-Lagrange equations (cf. [61]).

The fundamental equations of piezoelectric strained media in
the spatial state consist of the stress eguations of motion
or Cauchy's first law of motion (62) and Cauchy's second

iaw of motion of the form

eijijkz 0 in BXT (66)
the charge equation of electrostatics (63), the linearized
version of strain-mechanical displacement relations (55),
namely,

S e..=1/2(u,

i3 i3 1,3
the charge equation of electrostatics (63), the gquasi-static
electric field-electric potential relations (56}, the consti-
tutive equations (59) and (60), the boundary conditions of
surface charge and surface tractions (64) and (65), those

cof mechanical displacements and electric potential of the
form

+4 . (67)

J'i)

u.-u. = 0 on 3B XT (68)
i u
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p— o =0 on 3B, XT (59)
v

and the initial conditions of the form

*
ui(xj ,;O)—vi(Xj)ZO,
- * -
ui(xj,to)-wi(xj)—o in B(to) (70)
*
é(xi,to)—p (xi)=0 in B(to) (71)

Of the fundamental equations, only (62)-~(65) are included in
the two-field variational principle (61) and the remaining
fundamental equations and the usual condition (26) remain

as the admissibility conditions of the principle. By
paralleling the unified variational principle (45) in non-
linear piezoelectricity, the variational principle can be
furtner augmented so as to adjoin the remaining equations
into (61). In doing so, the dislocation potentials of the
form

G 0
A =" oo 1s..-1 a. . .. AV 7
11 B lj[blj /2(d1'3+u3,l)]d (722)
AO -~ ,O [ AY I
.. 7B vy (Egre 4 )av (722
*
29 e D% —ul) g (s )]s (722)
33 aBu L 1 e

are added to (%3), namely,

0 -
6C7=5C:+5ﬁr 8y ;dt=0 (73)
and zy using the same approach as described in (53), the
Lagrange multipliers are identified with
0 0 0 0
A =7 s.= =D. y: =t.=n. ==c = -n
i3 713771 Dy, Y 3 ijr# ¢ HiY4 (72)

ituting (74) into (73)and on bearing
missibility conditions, an augmented
is obtained in the form

}-s
o3

<
I
o
-

1

lti;ﬁrJrEilDf

O.Su.+LO.§e..+KQBT..)dV
13773 713713 i1 13

- 1 & 8 s .
+. Qth(L2J®+Li,Ei+KiSDl)dV
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O*
+f. dtrs L -5ude

T 'Sgt 13
Q* * d
£
+7p dts g Lo st.ds sy atf, g Ly8¢ S
u g
*
+fo dtf o K g0 dS =0 (75)
with the definitions (62)-(65) and
LO =T -(C S -C E. )
i37 13 'Tijk17kl Tijkk
KQ.= e..=-1/2(u, .+u. .)
iy 13 i,3 3.1
* *
9% . -d’ (76)
1 1
and
L;=D = (Cy 5S4k *C15Ey)
= - 4
Ki= = (By»2 5)
* *
K = (¢-9 ) (77)

Under the usual admissibility conditions mentioned for (45),
the variational principle yields the fundamental equations
of piezoelectric strained media as its Euler-Lagrange
eguations, and conversely the principle is satisfied if the
fundamental equations are met. The variational principle
that is not found in the open literature covers the vari-
ational principles of linear piezoelectricity whenever the
terms involving initial stresses are dropped out.

7- CONCLUSION

This paper presents certain integral and differential types
of variational principles so as to generate, as their Euler-
Lagrange equations, the fundamental eguations of an electro-
olastic solid with small piezoelectric coupling. The vari-
ational principles are deduced from Hamilton's principle by
modifying it through Friedrichs's transformation under the
tsual continuity and differentiability conditions of field
-ariables. The first variational principle &Cyu.,¢r =0 of
(25) is a two-field principle that generates the divergence
equations and the associated natural boundary condi*ions of
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electroelastic solid. This variational principle is extended

by  use of the dislocation potentials and the Lagrange
undetermined multlgllers, and henc? the variational princi-
@), ¢( } 0 of (37} is formula-

(¢
ple of sz{ui is o Eis

ted for a finite and bounded reglon of the electroelastic
solid, with an internal surface of discontinuity. It is
shown that the divergence equations and the associated
natural bcundary conditions for each region and the jump
conditions across the surface of discontinuity form a set
of necessary and sufficient conditions for the variational
principle (37). Another extension of (25) by Friedrichs's
transformations is the integral type of variational princi-
ple §L3{A3}=0 of (46),this variational principle has, of
course, all the features of classicalor true variational
principles and it produces all the fundamental equations of
nonlinear electroelastic solid but Cauchy's second law of
motion (lc) and the initial conditions (14) and (15) for
free and independent variations of the admissible state

hg= {ul,Slj t s ,0,E. ,Di }. In (46), introducing the
complementary electrlc enthalpy }{(Tij,Di) of (47) through
the Legendre transformation of the electric enthalpy
H(Sij,Ei), the variational principle § < “{ui’Tij'ti7¢’o’Di}
of (48) is formulated. This integral type of variational
principle leads, as its Euler-Lagrange eguations, to the
inverted constitutive equations (49) in addition to the
divergence equations and the associated natural boundary
conditions. The variational principle § L 5{8 . i.,ti;Ei,
o,Di} =0 of (52) is the reciprocal of 137713

€y 4y =0 of (25), and it is readily extracted from (46).
Moreover, two variational principles are derived for the
incremental motions of a piezoelectric solid subjected to
initial stresses. The variational principle §{g{v., ¢} =0
of (61) is precisely the counterpart of §{;{A;}=0 Tof (25),

and the variational principle 6(7{ui,eij,rij,ti;¢,o,Ei,Di}=O
of (75) is that of s{;7A,}=0 of (46) in the case of piezo-
electric s+rained solid.

The variational principles 8£{A,} of (46) and 8L, {A;} =0 of
(75) are quite general, and they are compatible with and
contain, as particular cases, some of variational principles
(e.g., [21]-[27],[30]-[32],[47]-[49] and references therein)
in the absence of elastic nonlinearities and/or initial
stresses. Besides, the variational principles recover, of
course, their counterparts 1in elastodynamics, if the terms
involving the quasi-static electric field are dropped out




(c£.051, [33], [34]). oOn the other hand, the unified vari-
ational principle (46) can be specialized to obtain a number
of variational principles operating on some of the field
variables. Of these variational principles, it is worthy

to mention a two-field variational principle operating on
the stresses and the electric displacements in the form

T

= = 8
5<g{rij,ai} fp dt fg (Kj487;,+K;6D,)dV=0 {(72)

which holds if and only if the strain-mechanical displacement
relations (3), the electric field-electric potential re-
laticns (4) and the electric boundary conditions (13) are
satisfied. A three-field variational principle is recorded
in the form

r
s Lo MirTigr !
=f_ dtsr_{(L .6uj+L26¢+Kij5r..)dV

T B 71j 1]

* *
Ll.éude+fT dt[aB L25¢d8=0 (79)

+rL dts 3

T 3B
which operatss on the mechanical displacements, the electric
potential and the stresses and holds only for the case when
the divergence equations (1) and (2), the strain-mechanical
displacement relations (3) and the surface charge and
traction boundary conditions {(10) and (12) are met. Along
this line, a four-field variational principle is expressed
by

s L tn =y dtr_ (L

PR B - Suyrlpsorl; 498, ;

13 1]

+ L. §E . ydv
1 1

*
+IT dtfaB Lljdude
*
o dtfaB L25¢d5=0 {80)
for all the admissible states p = {ui,Sij;¢,Ei} in the
10 .
notation of (25) and (43); this operates on the mechanical

displacements, the Lagrangian strain, the electric poten-
tial and the electric field, and it is subjected to the
constraint conditions (3), (4),{(11), and (13)-(15).
Moreover, another variational principle readily follows
from the variational principle (75) as

ey v
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B 1771 i
O*
mtfas L.l §t.dSs
*
Jer K 5.ds =0 (81)

this 1s obviously the

on of (76) and (77);
e variational principle of (61), namely,

sC {ui,¢}=o (82)

(1%}

i
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egoing variaticonal principles are

lies dealing with the nonlinear and

of piezoelectricity. They provide a
generating approximate direct solutions
ial functions which can be readlily cho-
the finite element and variational meth-
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use of the variational principles presented are now in
progress, and they will be reported in a forthcoming memeoir.
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CHAPTER 3
NONLINEAR ELECTROELASTIC EQUATIONS OF WAVE
PROPAGATION AND VIBRATIONS IN QUARTZ BARS

ABSTRACT

This paper presents the nonlinear electroelastic equations
of wave propagation and vibrations in a quartz bar of
uniform cross~section. To begin with, Hamilton's principle
is stated for a nonlinear elastic continuum with small
piezoelectric coupling, and then by carrying out the
pertinent variations, a variational principle with certain
constraints is formulated. The constraints are incorporated
into this principle through the dislocation potentials and
Lagrange undetermined multipliers, and hence a generalized
variational principle is derived for the moticns of
nonlinear piezoelectric continuum. Next, the generalized
principle together with a series expansions of its
mechanical displacements and =2lectric potential, a system of
nonlinear eguations of the quartz bar is consistently
obtainad. Thase one-dimensional eguations of higher orders
of approximation in which account 1is taken of only the
2lastic nonlinearities govern all the types of extensional,

flexural ard torsional motions of quartz bar. Also,

special motions of guartz bar and those of quartz bar with
initial stresses are pointed out. Lastly, the fully
linearized governing equations of quartz bar are considered,
the unigueness of thair solutions is examined and the
suffizient condiitions are enumerated for the unigqueness.

1= INTRODUZTION

A%

‘azoelectricity is a reversible, inherently

polarizable but not magnetizable field, and
i-static and linear. In piezoelectricity,
is considered to be dynamic, while the
taken to be static; this gquasi-static

well justified in all cases of engineering

es linearity in piezoelectricity, there may

intrinsic nonlinearity or an induced

. The former is peculiar to a piezoelectric

' whereas the latter is due to its deformation.

application of intrinsic or induced nonlinearity and/or
of them can significantly affect the mechanical

vior of piezoelectric elements. This is desirable in
cases an it has been examined only for a few particular
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motions [1]. In view of this review article [1], the present
paper is concerned in deriving the one-dimensional nonlincar
electroelastic equations describing all the types of motion
cf thin cylindrical quartz bars.

Recently, extensive studies have been made of one-dimensional
piezoelectric problems at low frequencies [2—5, 10—21]. They
have been directed toward either deriving differential
governing equations of bars as in few cases E2—5, 7-9] or
solutions of specific bar problems as in most cases [lO—Zl]
Among the former cases, Milsom and his colleagques [2,3] have
presented a three-dimensional mode-matching theory of
piezoelectric rectangular quartz bar. Tiliersten and Eallato
[4] have constructed the macroscopic equations accounting for
the nonlinear extensional motion of thin piezoelectric rods,
and they have applied these equations in the analyses of both
intermodulation and nonlinear resonance of quartz rods. As a
special case of their electromagnetic theory of rods, Green
and Naghdil [5] have studied the isothermal vibrations of
piezoelectric crystal rods. Moreover, following Mindlin [5],
the author [7-9] has derived a one-dimensional theory of
vibrations, which accommodates all the types of motions of
pi=zoelectric crystal bars for both low as well as high
frequencies. He has taken into account all the mechanical
and electrical effects, and also he has described an
apolication to biomechanics.

h

Q

orts to solve certain problems of piezoelectric bars havs
recently made by various authors [1,10-21]. Eer Niss2
as calculated approximately the electrode stress eff=acts
length-extensional and flexural resonant vibrations of
g, thin bars of guartz. An analysis of the flexural-
32 equation has be2en presented for a rod with a vibration
olator [14]. The mechanical behavior of a piezoelectric
r has been studisd with an electrical voltags as well as a
me-dependent flux of heat at one end [15]. A simple one-
mensional model has been used to investigate the effect
the relaxation time on the behavior of a semi-infinite
iezoelectric rod under a thermal shock at its end [16].
Moreover, the extensional vibration of a cylindrical rod
with longitudinal piezoelactric coupling has been dealt with
in an approximate procedure, and the depolarizing-field
nffa-+ has been analvzed in a rod of finite and infinite
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length [17]. A detailed numerical analysis of the dispersion
relations has been reported for the axisymmetric normal waves
of a piezoelectrically active bar wavequide [18]. rurther

the vibrational dicssipation characteristics of a

pilezoceramic bar have been considered [19], as has the
electrical excitation of an asymnetrically radiating bar [20].
Most recently, Solov'ev [21] has examined the influence of

the electroted zone on the natural frequency of thickness
resonance of a piezoceramic rod of rectangular cross-section
under the conditions of plain strain.

Our aim in the present paper is (i) to obtain variational
formulation for the nonlinear equations o. an electroelastic
s0lid with small piezoelectric coupling, with the help of this
formulation, (ii) to derive a one-dimensional nonlinear
electroelastic equations describing all the types of motions
of thin guartz rods, and then (iii) to consider special
motions of guartz bars and those of quartz bars with initial
stresses, and also to examine the uniqueness of solutions in
the linearized bar equations.

In the description of motions of the electroelastic solid,

only the elastic nonlinearities are included, and hence the
electrical behavior is taken to be linear. Accordingly, in
the treatment of guartz rods which have small piezoelectric

coupling, the nonlinear stress equations of motion, the
associated nonlinear boundary conditions and the nonlinear
strain-mechanical displacement relations are used, while

the linear charge eguations of electrosta:ics, the associated
linear boundary conditions and alike are employed. Also, in
the constitutive equations, the second-order, third-order

and fourth-order elastic coefficients of quartz are retained
for the stress tensor, and only the linear terms for the
eleztric displacements.
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C tnhe content of this paper is as follows. First,
hree-dimensional nenlinear equations of electroelastic
are summarized 1in Section 2. This is followed in
by Hamilton's principle for the electroelastic
nd the associated quasi-variational principles. The
of a gquartz bar 1s described, and also the series
for the mechanical displacements and the electric
>f quartz bar are recorded in Section 4. The
r electrnelastic equations of gquartz bar are derived

rh
o
Rl
oY)
s
s
~
~

[ SIce]

O 00
(t'3 O e () = b D

(O (]

0 O B e
WD

— 0 T et

[N

D ey

A7)

O
8]




103

by means of the quasi-variational principles together with
the series expansions in Section 5. Special motions of
quartz par are considered, and especially cthe linesarizod
equations and the uniqueness in their solutions are studied
in Section 6. Finally, the concluding remarks and further
needs of research are indicated 1in Section 7.

N otation- 1In this paper, standard Cartesian tensor
notation is used in a Euclidean 3-space L. The xk—system

of the space E 1is identified with a fixed, right-handed
sytem of Cartesian convected (intrinsic) coordinates.
Einstein’'s summation convention is implied for all reveated
Latin indices (1,2,3) and Greek indices (1,2}, unless
indices are enclosed with parantheses. Further, commas and
primes stand for partial differentiations with respect to
the indicated space coordinates and the coordinate Ko the

bar axis, respectively, and superposed dots for time
differentiations. Asterisks are used to designate prescrike
qua“-ltlpb. The symbol B{t) refers to a region B with its
coundary surface 3B and closure B(=BU3B), at time t in the
space E, and BXT refers tc the Cartesian product of the
region B and the time interval T:Eto'tl)' Also, poldface

pracxets are introduced so as to denote the jump of enclos=z
quantity across a surface of discontinuity S of the region

l99] (L

2 - NONLINEAR PIEZOELECTRIC EQUATIONS

In the three-dimensional space E, let B+3B stand for an
arpitrary, simply-connected, finite and bounded region of
space occupied by an anisotropic elastic continuum with
small piezoelectric coupling at time t=t . The regular
boundary surface 3B is consist of the co%plementary
subsurfaces (S ,S ) and (SO,Sf), that

is, S,US, =S,U '»wzag and S NS, =SAS.=p. Also, let BYT

represent the domain of do‘lnlthhs for the functions
of (xy,t).

~

NMow, the three-dimensional differential equations are
expressed for the electroelastic continuum with small
piezoelectric coupling in the xk—system of Cartesian
coordirates as follows [22,23].

|

“
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Diveracence Eguatdlons ¢
- L}

tkl’k-oa1= 0 in  BXT (1)
1 T kT TR ke ety ! (2)
D =0 in BXT (3)

with the definitions

tklz asymmetric Lagrangian stress tensor measured per
unit area of the undeformed body

17 symmetric Kirchhoff stress tensor

Tklztkrul,rz Maxwell electrostatic stress tensor
o = density of the undeformed body

a, = Lagranglian acceleration vector

U, = displacement vector

5k1= Kronecker delta

Dk = electric displacement vector

Here, Eg.(l) stands for the nonlinear stress equations of
motion and Eg.(3) for the linear charge equation of
electrostatics. In Egs (1) and {(3), when the stress tensor
tk per unit area of the undeformed body, associated with a

surface in the deformed body, 1s referred to the base vectors
in the deformed body, Tt arises, while if t, is referred to

k1l k
the base vectors in the undeformed body, tkl ensues.
GCGradient Eguations
N S .=
Skl— 5 (Lk,1+ul,k+ur,kur,l) in BXT (4a)
S, .=e, .+ —t—(e__+W__)(e_ . +w__) (4b)
kl "kl 2 rk k rl "rl
e .= L (u +U Y, W =—i—(u -u ) (5)
k1l 2 k,1 “1,k’"" k1™ 2 k,1 "1,k
= -_— ‘b 1 R 6
E, k in BXT (6)

with the definitions
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Skl = Lagranglan strain tensor

€l ° linear strain tensor

wkl = rotation tensor

:k = electric potential

Ek = quasi-static electric field vector

Equation (4) represents the nonlinear strain-mechanical
displacement relations and Eqg. {(5) the electric field-
electric potential relations.

Constitutive Eguatdilons

1 3H 3H .=

1, .= { + ) in BXT (7)
k1 2 QSkl SSIK
D ksl in BXT 8
k ~ BEk in X (8)
with dhe definitions
H = C EkDy = electric enthalpy
U = potential energy density

A gquartic form of the electric enthalpy is recorded 1in the
form

[oey

~ I .~
>~ “k1mn®k1%mn T2 “k1BkE1 %k 1mPk51m

1 1
6 Cklmnrssklsmnsrs * 24 Cklmnrstusklsmnsrsstu

H =

(9)

In view of Egs. (7) and (8), this eguation ylelds the nonlin-

ear constitutive equations for the components Ty of the

symmetric stress tensor and the linear constitutive
equations for the components Dk of the electric displacement
vector as

T 1
2

= -
k1 ”klmnsmn kalgm+ Cklmnrtsmnsrt

1

6 Cklmnrtpusmnsrtspu (10)

3

C, LE in BxT (11)

Dy = k11

k * CkimSim”

Here, Crimn’ Cximnre and Cxlmnrtpu are the second-order,
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third-order and fourth-order elastic constants, Cklm is

the pilezoelectric strain constants and C the dielectric

k1
permittivity. Of these constants, the elastic constants
refer to free constants since they describe the stress-strain
relations when the electric field is absent, while the

remaining constants refer to clamped constants[24]. Further,
the usual symmetry relations hold for these material
constants, namely,

Cximn”™ C1xkmn® Cmnk1’ Sxim™ Ckm1’ Cx1® Cix
Cklmnrt= Cmnklrt= Crtmnkl= Clkmnrt (12)
C = C__, = C = C =C .,
klmnrtpu mnklrtpu rtmnklpu pumnrtkl Tlkmnrtpu
Boundarv Conditions
* *
tk - nltlk = tk-anlr(skr + uk,r): 0 on Sth (13)
o - D =0 on S XT (14)
Xk o3
u, - uf = 0 on S XT (15)
X X u
$ - ; = 0 on S¢xT (16)
with the definitions,
tk = nltlk stress vector
nk = outward unit vector normal to 33
g = nkaz surface charge
Initial Condil¢tilons
* 0
uk(xl,to) -y (Xl) =
- *
- - ; 7
uk(xl,to) wk(xl) 0 in B(to) (17)
*
’(Xk’to) --?(xk) =0
Jump Conditions
nk[tk] =0 (18a)
a on SXT (18b)
Ty Lkr(61r+ul,r)]+t1 =0
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nk[Dk] = Q on  SxT (19)
[,1 -0 (20)
[:] -0 (21)

with the definitions

ti = applied prescribed surface traction
Q = electric surface charge density
S = material surface of discontinuity
Egquations (1) - (17) completely describe the nonlinear

behavior of electroelastic continuum with small piezoelec
couprling, and the last four equations arise at a material
surface of discontinuity.

3- VARIATIONAL tORMULATION

In plezoelectricity, the fundamental eguations have been
often expressed in variational forms as the appropriate
Euler eguations of variational principles [1,25-30]. These
variational principles have been primarily derived with the
aid of Hamilton's principle [1,6,25], and they allow the
establishment of lower order theories and approximate direct
solutions in piezoelectricity [26,31]. Now, Hamilton's
principle is stated for the nonlinear elastic continuum
with small plezoelectric coupling as
iM=5 L4t +5Wde = 0 (22)
T T
with the definitions
= - S
<= [k - (s, ,,E ) ]av (23)
A SR -
K = 5= e U ay (24)
W= (b *54) 35S (25)
SW= . - & (o
B(tkéuk 38 ¢ 5

where £ is the Lagranagian function, K the kinetic energy
density and #W the virtual work per unit area done by the

prescribad surface tractions €k and surface charge o™

B3y inserting Egs. (23)-1(25) into Eq. (22), one arrives at
the variational equation of the form.
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sH= 8 sdt 5 [ —%— pu U - H(S,  ,E)]dV

T* B *
/s (ttduk og6%)ds) = 0 (26)
3B
where all variations vanish at t=t_and t=t Taking the

indicated variations, utilizing th€ fact thét the operation
of variation commutes with that of differentiation, integra-
ting by parts with respect to time and employing the
constitutive relations (7) and (8) and the constraints on

the variations, Eqg. (26) takes the form
§H= ':;dté(Dakéuk+1k168kl—Dk6Ek)dV
* *
§ - =
+ é dt é’(tk uk g 69) ds 0

By substituting the nonlinear strain-mechanical displacement
relations (4) and the linear electric field-electric poten-
tial relations into this equation, employing the divergence
theorem and rearranging terms, one finally obtains

§X= s dtsq [‘Tkr(élr +u1,r)J’k_pa1} 6uldv
B

T
+ f dtrs Dy ké@dv
T B !
* o
*rdtys [y - ngr (e )] duyds
T 3B !
+ £ dts (¢ -n,D,)sedS = O (27)
T B

In deriving this variational principle, the principle of
conservation of mass is considered and the condition

& = - 1

»uk §¢= O in B(to) and B(tl) (28)
is imposed. Since the variations 6uk and §» of the admis-
sible state Ah = { uk,¢} in Eg. (27) are arbitrary and

independent inside the volume B and on the boundary surface
3B, one has the nonlinear stress equation of electrostatics
(3) and the associated natural boundary conditions of
tractions and surface charge (13) and (14) as the appropriate
Euler equations of the variational principle (27). This is

a two-field variational principle, and it contains some of

earlier variational principles as special cases [1,25,32,33].
Further, it is of interest to note that this variational
principle can be extracted from the principle of virtual work
as well [30].
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The differential variational principle (27) can be used, as
usual, in solving approximately the boundary-value problems
of nonlinear elastic continuum with small plezoelectric
coupling, provided that the initial conditions (17) may be
left out of account by a variety ot numerical techniques
[34,35]. Besides, any approximating solution must satisfy
the rest of the fundamental equations (4) and (6)-(3) 1n
accordance with Eqg. {(27) as well as the usual continuity

and differentiability conditions of field quantities and the
condition that the stress tensor be symmetric. This feature
of Hamilton's principle has been discussed very thoroughly

by Tiersten [36] and Gurtin [37]. However, the constraint
conditions (4) and (6)-(8) can be relaxed through certain
methods [37—39]. Of these methods, Friedrich's transformation
[38] is used herein so as to remove the constraint conditions
due to its versatility and wide use in the literature [39].
Accordingly, to adjoin the constraint conditions into the
quasi-variational principle {(27), the dislocation potentials

. . each constraints as a zero times a Lagrange multiplier,

are introduced as

A

- -— -———l b
by TN D8y e qruyg prup a0

\ *
207 ((uj - uk)
e aF (29
421‘- LJ(Y-?) )
A = u, (E + %)
22 k" Tk Pk
and they are added to Eg. (22), namely,
I o= sH #3730 {5 (2 +4& yav o+ f&..ds
T B 11 22 Su12
e radS = 0 (30)
S:2L
with the'virtual work of the form
* *
W o=t _su, d8 =S g% dS (31)
s TkTTk g
“t g
Then, treating all the variations in Eq. (30) as free,

one finds
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1 9 H 9 H o H ¥
§J3 =sadt s [ -pa,_su, - ( - ) 8§S - ——=— SE, ]V
T & K"TkT T2 Tes, 9s,,  TTk1TdE, Tk
*
+/dtfE su - dtf o 60 dS
T S, T S,
+rde sy L[S, - L (u, +u, L+ Lu 1]
2 AT T M 1t e ke
+ A kl[GSkl—(Guk,l+ur’k6ur,l)]}dV
+é<ﬂt%£6pk(Ek +0 ) +uy (8B +a¢,k)]dv
+ sdt s > \
é rlon ta - u) + A su ]ds
S
u *
+7dt s [Su(e~ ¢ ) +use]ds = 0 (32)
T s,

As before, by applying the divergence theorem and after some
rearrangement, the stationary condition (32) readily gives
the Lagrange multiplier in the form

A =1

k1 "kl 7

W= -0o=-nD (33)

since the volumetric variations §u §%, dskl, SE, ,

K’ k' %M
and Suk are arbitrary and independent in the region B and
the surface variations éuk, §¢, ka and §u on the boundary
surfaces S , S S, and S .

u t g

&t
4

Finally, from Egs. (30), (31) and (33}, one obtains the
variational principle as follows.

5J<;’\>=Tf6Jk1kldt =0 (34a)
where
A={U st T, 1S 7200, DiEL) (34b)
and
*Ji1117 é{'[Tkr(51r+“1,r’],k'°a1}6“1dv (33)
= 36
611212 é Dk,k6®dv ( )
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. 1 3 H 9 H
§J I ( y Jss, ,av (37)
1313 k1l 2 T3S, T3S, k1l
J = —r(p.+ S0 ) sE av (38)
“T2121 Yk SE k
B Kk
§J =r s, ,- 2 (u +u +u u Y]t ,dv (39)
22227 5 k1 2 k,1 "1,k "r,kr,l k1
923237 "L T 000 DAY (40)
4 *
. - . _
931317 [epmnyty 8y + vy, )] 6uas (41)
t
*
oJ3232= é(o —nka)6$dS {(42)
[of
R * g *
§J3333% -g(uk - u )it ds -Sf (¢ —¢) §odS (43)
u $

This variational principle may be written in a compact form
by

ST <A>

!
Cr
S
joN
ot
.~
(.
A
67]
=
—
NIH
C

+U +Uu

k,17%1,k r,kur,l)]

o ] -
W (7 ) + K H (S /B )dV

s K

* *
- r s - 9
.(Lk Lk)tkds +Sftkukds
u t
* *
- /(% =% ads +fa¢ds} = 0 (44)
1S S

&

¥ o]

The variational equation (34) or (44) generates, as its

Euler eguations, the fundamental equations of nonlinear

elastic continuum with small piezoelectric coupling, and
nence we conclude a variational principle below.

Variational Principle : Let B+9B denote
regular, finite and bounded region of the space E, with its
piecewise smooth boundary surface 3B(=SUUSt=S¢USo and

SUASt=S¢nSG=ﬂ and its closure
B(=BU3B). Then, of all the admissible states
A(=uk,tk,rkl,sk1;b,c,Dk,Ek) which satisfy the initial

conditions (17) as well as the symmetry of stress tensor

Tkl and the usual continuity and differentiability
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conditions of field variables; if and only 1if, that admissible
state Awhich satisfies the nonlinear stress equations of
motion (1), the linear charge equation of electrostatics (3),
the nonlinear strain~mechanical displacement relations (4),
the electric field-electric potential relations (6), the
nonlinear constitutive equations (7) and (8), and the natural
boundary conditions (13)~(16), is determined by the
variational equation §J<A> = 0 of Eqg. (44) as its appropri-
ate Euler equations.

The variational principle (44) is believed to be first report-
ed herein, and it does agree with and represents, as special
cases, certain earlier variational principles operating only
on some of the field variables [25,30,32,33]. By use of the
fundamental lemma of the calculus of variations, the principle
(34) or (44) leads readily to all the fundamental equations

of piezoelectric continuum with small piezoelectric coupling,
Eqgs. (1), (3), (4) (6)-(8) and (13)-(16), but the initial
conditions (17); conversely, if these equations are met, the
principle is obviously satisfied. Further, the variational
principle can be readily expressed, following Tiersten [}6],
in an augmented form which incorporates the initial

conditions as well as the jump conditions (18)-(21); the
result is a differential variational principle [29,30].

In closing, it is of interest to note that the expressions

5J1313 and 6J2121 in Egs. (37) and (38) take the form
87 = - -
21313 é[Tkl CrimnSmn 7 Cmk1Fm
+ ¢ s s
2 klmnrt™mn"rt
L Loc S s_,S_)]%s .av
6 kKlmnrtpu " mn rt pu k1l
—-— _ - _ 6
%2121 éEDk (CyinSim * Cx1F1)d OB AV (43)

in the case when the constitutive equations (10) and (11) are
used in lieu of Egs. (7) and (8).
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A= BAPANSION IN SERIES

This section deals with the description of bar geometry, the
method of reduction in deriving the electroelastic equations
of quartz bar and the expansion in series for the field
varlables of quartz bar.

Geometry of Quartz Bar - Consider an
initially selender quartz bar of uniform cross-section in
the Euclidean 3-space ©. The bar is referred to a system of

right-handed Cartesian convected coordinates Xy . The axes

Xy are selected as the principal axes of kar cross-section,

and the axis x3 is taken as the locus of centroids of bar

cross-sections which is a straight line in the undeformed
bar. The cross-section of bar A is bounded by a simply-
connected Jordan curve C, that is, sufficiently smooth and
non-intersecting. Moreover, by definition, one has the
fundamental assumption of bars, d/i1<<l, where d is the maxi-
mum diameter of cross-section and ¢ is the length of quartz
bar. In addition to this, no singularities of any type is
supposed to be present within the region of quartz bar.
Thus, the bar is treated as a one-dimensional continuous
model of a three-dimensional body.

Method of Reductlon- The presence of
electric field and material anisotropy makes it almost always
compulsory the use of approximate lower order equations in
investigating the dynamic characteristics of piezoelectric
elements. Of the standard techniques [6,40-43], to reduce
the three-dimensional equations of piezoelectricity into the
lower order equations, Mindlin's method of reduction [6], is
especially suitable and wide use in the literature [25,40-43],
and it is used herein so as to construct the nonlinear
electroelastic equations of quartz bar. This method of
reduction rests entirely on the series expansions of field
variables which are inserted in a pertinent variational
principle which is then integrated with respect to one-or
two-dimension.

EXxXpansion in Power Series - Under the
usual existence, regularity and smoothness assumptions of

bars and their fundamental assumptions, mentioned above, a
set of shape functions (611,512,....3 mn) is selected, and

the shape functions are taken to be complete for a'given
field quantity in the bar region. Then the electric
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potential and the displacement components are represented by

. LT Am,n) (m,n) .
(‘vluk} ‘m;n:ott‘ (X3It)luk (X3lt)}8mn(xllxz) (44%)
Here, ¢(m’n‘and uim,n) are unknown a priori and independent

functions of electric potential and mechanical displacements
of order (m,n) to be determined, and the shape functions Smn

of order (m,n) can be selected to be any type of functions
which is appropriate to the contour of cross-section and they
are taken as a power series of the form

I x,) = Xy X, (47)

in the present analysis.

5- NONLINEAR BAR EQUATIONS

In this section, by means of the method of reduction described
in Section 4, the system 5f one-dimensional, nonlinear
electroelastic equations of gquartz bar is consistently
derived. To begin with, the series expansions (46) are
inserted into the variational principle (34}, the volume
integrals are split into an area integral over a cross-section
of, and a line integral along, the quartz bar, and then the
integrations are performed. The resulting equations are
recorded below 1in terms of various field gquantities of higher
orders which are now defined.

Field Quantities of Order (m,n) - The
stress resultants of order (m,n):

m {myn)_ . m_ n

vy =] X, %, T, 194 {48)
N (m,n) _ ? {Em T (m+p-2, n+q)

i Cege0 SET1L

+ (np+mq)T12(m+p_1 ¢ N+g-1) + anzz(m+pl n+q-1)
v (m+p~1, n+qg) ~  (m+p, n+g-1) {(p,q)
v pTyy * aTy, Juy



115

+ 7. (m¥p,  n+g) v

(m+p-1 , n+qg}
33 u, (prq) + [(p+m)T23

+

23 33

the surface loads of order (m,n):

+ (g+n)T (m+p, n+g-1) o (m+p, n+q—1)]uk(p,q)}

(m,n) _ m n
Pk —gxl x2 YuTdeA (49)
{(m,n) _ (m,n) {(m,n)
Qk = Pk Rk (50)
N -
Rk(m,n) T [(pp (m+p=-1, n+q)
‘ p+q=0_ 1
(m+p, n+gq-1), (p,q) {m+p, n+gq)_ (p,q9)
+ 9P, Juy +Py uy ] (51)
N
qu(m’n) = [(pT4, (m+p=1, n+q)
h p+q:0
+ qT32(m+p, n+q-l))uk(p,q)
-~ (m+p, n+q) 7 (p,q)
+ Ty ul ] (52)
the acceleration of order (m,n)
N .
g, (Mmoo _g 1 (m*p. n+q)Uk 2,9) (53a)
< p+a=0
(m,n) _ o (m,n) .
Ak = Uk (53b)
the prescribed stress resultants of order (m,n):
*(myn) _ ., m_n_* *(myn) _g, MmN *,
Tk = Axl x2 tde, Pk —Exl x2 tkuS (54)
the aerial moment of inertia of order (m,n):
pmend oy My Nap (55a)
x 1 72
with the usual quantities of bars as
{'\ -
I(”O):A, I(l'O)= 1(0,1): I(l,l)= 0 (55b)
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the electric displacements of order (m,n):

Dk(m’“) =/ x."_"p aa (56)

the surface charge of order (m,n):

m_ n
1 x2 \ﬁDadS (57)

D(m,n) -

and the prescribed surface cha.ge of order (m,n):

* * *
(M) yy M Motaa, p" MMy My Naas (58)
1 %2 c 1 2

are defined. In the above eguations, Y denotes the unit

outward vectors normal to the contour C of cross-section.
Also, the electric enthalpy function G measured per unit
length of the undeformed bar, namely,

G = [H4dA (59)
A
1s introduced for later convenience.

Eguations of Motion- Consider the volume
integral (3.14) of the form, namely,

) 1 .
) T = 7 J s { M
Ippprm s dxg Sl Gy w07y

—Qal}du av (60)
C A

1

Substituting the series expansions of mechanical displace-
ments (46) into this integral, carrying out the integrations
over A, using the divergence theorem and replacing the
stress and load resultants of order (m,n), one obtains

N

N z(mln) (m—ll n)
iJ ="dx, Z (T~ -mT
1111 L 3m+n:03k 1k
(m, n=1) {(m,n) (m,n)
ERLEIY v Ny v O
_ (m,n), {m,n)
oAk )3uk (61)
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where L stands for the 1lntarval [O,l]. When setging the
variational equation (34} equal to zero for the arbitrary
and independent variations of field quantitles such as
(m,n) | . . . .
euk "7"in this case, one readily obtains the macroscopic

equations of motion of order (m,n) in the form

“{m,n) _ (m-1, n) _ (m, n-1) , (m,n)
Tak Mk "ok Ny
(m,n) __, (m,n) _ A
+ Qk NAK = 0 on LXxT (F2)

for the quartz bar.
Charge Equation of Electrosta tic s
As before, evaluating the volume integral Jl2l2 of Eg. (36},

one arrives at the macroscopic charge equation of
electrostatics of order (m,n) in the form

D:(m,n) _ le(m—l S O I nD2(m, n-1) | p(m,n)

in terms of the quantities defined by Egs. (56) and (57)

= 0 (63)

T lectric Field and Strailn
Distributilions - Likewise, considering Egs. (39)
and (40), integrating over A and using the stress and
electric displacements of order (m,n), the distribution of
strain of order (m,n)
N
Y m, n (m,n)
S, q (X /t) “ o X1 %5 Siq (x5, t) (64)
where
(m,n) _ (m,n) 1 m*n (m-p, n-q)
Sx1 ! " T2 Lageo Crx
v (MR N=a)y (Prq) ,, (Pr3), (65)
rx rl ril
with
{(m,n) 1 - (m+1), n) (m+1, n)
e, = ——[(m+1) (8 Ug *e U, )
(m, n+1) (m, n+l)
+ (n+l) (s,u, +8,, U, )]
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{m,n) _ 1 -7 (m,n} {m+1, n)
eoL3 ) Lua +(erl)Slozu3
+ (n+l)62au3(m' n+l)]
(m,n) _ 1 N (m+1, n)_ (m+1, n)
Vo3 = 5 Ll 6y $1aY ’
(m, n+1) _ (m, n+l)
+ (n+l) (8 ,5u YL )]
{m,n) _ _1 < (m,n) _ (m+1, n)
Yay =5 [ (m+1)8 )443
- (n+l)62au3(m' n+l)]
(m,n)_ # (m,n) (m,n) _
e33 = u3 , w33 = 0 (66)

and that of electric field of order (m,n):

N
m._ n {m,n)
E, (x,,t) =% X, X, E (x.,,t) (67)
k' 71 min=0 1 2 °k 3
where
m,n . (m+l, n)
Ea( D= -Lmen)s e
{m, n+1)
+ (n+1)52a¢ ]
e, o = im, ) (68)

are found for the vanishing of the coefficients of free
variations of the stress resultants and electric displace-
ments of order (m,n) of quartz bar in the variational
equation (34)-

Constitutive Egquations - Paralleling to
the derivation of electric field and strain distributions
above, the volume integrals (37) and (38) are evaluated by
use of Egs. (48), (56), (64) and (67), and then the
constitutive relations are obtained for the stress resultants
of order (m,n) and the electric displacements of order (m,n)
in the form.

(m,n) 1 3G 3G
T = —— ( +
33 {m,n) 35S (m,n)

T 9
K1 3 ) on Lx (69)
k1l 1k

Dopriae ae:
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(9]

(m,n)
D —mj' on LxT {70)
Ex

3
3

in terms of the electric enthalpy function G of Eg. (59)

In the case of the linear constitutive equations (10) and
(11), the volume integrals (45) are evaluated in lieu of Egs.
(37) and (38) with the result,

(m,n) N {a,b)
T = C 1 S !
z
k1l klrta+b:0(m+a , N+b)rt
_ N (a,b)
Crkis , I(m+a, n+b)Er
a+o=0
1 N N
+ —— C {a,b) (c,d)
k1 5 z 3 ’
2 K rtpqa+b:0 c+d=0xsrt Spq (71)
1 N N N (a,b) (c,d) (e,f)
+ — C S S S
Ve z z 4
6 klrtpq;va+b:0 Grd=0 G+f=0 rt jolef uv
with
*o= T(m+a+c, n+b+d), °° I m+a+tc+e, n+b+d+f)
and
(m,n) N (a,b)
D = C,_,_ % I
k klra+b:0(m+a, n+b) " 1r
N (a,b)
+ C .7 I E (72)
k1a+b=0 (m+a, n+b) 1
i T £ - - Y.,
in terms o I(m,n?f Eg. (5.8

Boundary <ConAditions- The mechanical displace-
ments and the surface charge are prescibed on the surface

portion Sd of the lateral surface of bar Sl and on the left

face boundary surface Al’ while the traction and the electric

potential are prescibed on the remaining portion ST of §. and

1

ll

Us =Sl’ A US UAr=aB. As in the derivation of
T

o the right face boundary surface Ar' where Su=SO=SdUA
= = !

St S; STLAr’ Sd 1S4

the stress equations of motion and the charge equation of

electrostatics, by evaluating the surface integrals (41)-(43)

of the variational principle (34), the natural boundary

P
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conditions are expressed for the tractions of order (m,n) by

*(m, ’ ’

pk( n) _ (Pk(m n) " Rk(m n)) = 0 on deT (73)
*

Tk(m,n)_(TB“:(m,n)+N3k(m,n)) = 0 on Ale (74)

for the surface charge of order (m,n) by

*

p¥immn)_ plmen) g on  SXT (75)
* (n

@ (m,n) D3(m,n) = 0 on Ale (76)

for the mechanical displacements of order (m,n) by

*{m,n) _ (m,n)

Uy K =0 on SuxT (77)

and for the electric potential of order (m,n) by
*

g imem) g lmen) g on S, XT (78)
Here, (tk and %) and (uk and ¢ ) are prescribed, since they
are the most commonly encountered in practice [7].
Initial Conditions - By making use of Eg.
(17) and Eqg. (46), one reads the initial conditions of

order (m,n) as

(m,n) *{m,n)

uk (x3,t) - U (x3) = 0 on L(to) (79)

- (m,n) _ ¥ (m,yn) _

Uy (x3,t) Wy (x3) = 0 on L(to) (80)
and

*
o) (w0 = (M) (%)) = 0 on Lt (81)
* * * . .

where Uk’ wk and vy are given functions of x3.

Thus far, the one-dimensional, nonlinear equations of succes-
sively higher orders of approximation are consistently
developed for quartz bars on the basis of three-dimensional
theory of piezoelectricity. These governing equations of
order (m,n) consist of the electric potential and mechanical
displacement fields (46), the stress equations of motion

(62), the charge equation of electrostatics (63), the electric
field and strain distributions (65) and (67), the constitu-
tive equations (69) and (70) or (71} and (72}, the natural
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boundary conditions (73) - (78) and the initial conditions
(73) - (8l). The number of the governing egquations is
infinite, that is, m+n=0,1,2,..., N==, and hence the
equations are not formally determinate yet; they will be made
deterministic in the next section.

t=- SPTTIAL MOTIONS

To obtain a deterministic system of nonlinear electroelastic
equations of quartz bar derived in the previous section,
these infinite number of equations with their infinite number
of unknowns must be consistently reduced to a finite number
0of egquations with their finite number of unknowns by a
process of series truncation. The process of truncation,
special motions of quartz bar, and especially the linearized
governing equations and the uniqueness in their sulotions

are taken up in this section. Further, the motions of

cuartz bar with initial stresses are pointed out.

[10]
D QK

n
o+

minis¢tic Bar Eguatilions - The
derivation of the governing equations of quartz
entirely on the fields of mechanical displacements
ic potential, chosen a priori as a starting point
nting them by the power series expansions (46) of

. m,n m,n
which the terms uk( ) and ¢( ')

®

b K ¢t
0
3

D = (D

WO
33w O
O L W ke

(L (L ry tx M
Il
LaBN®!

are already taken to be

the governing equations of order (M,N) is
v r

m_n_,(m,n) {(m,n)
Xl x2 {3 ,u,K } (82a)

0
xpansions (46) together with the condition
= u, = 0 for all mzM+1l, nzN+1 {82b)

nly the quantities involved in (82) are kept in the
ations. In viev of Egs. (82), there exists the 4 (M+1).
(N+1) unknowns u, ”“’n)and :(m,n)

N

D W
NN

Q.
+ O

and equations to solve them.

In addition to Egs. (82), another type of deterministic
governing equations is simply defined by

b(m,n) - u (m,n)

¥ = 0 for all {(m+n)z2N+1 (83)

where M is a positive integer. This obviously considers the

same weight for both of the lateral coordinates X, and Xye




Further, in both the definitions (82) and (83), by selecting
the positive integers M and N or only N for particular
applications, the governing equations incorporate as many
higher order effects as deemed necessary. Hence the customary
correction factors of bars are naturally abrogated [6].

Special Motions - Of the special motions of
quartz bar, the extensional motions [44], can be examined by
representing the electric potential and the mechanical
displacements as in Eq. (46) with the condition

ua=ua(xl,x2,t); 0. Also, 1in the case of low-freguency

extensional motions, it is appropriate to take the vanishing
boundary stresses on the lateral boundary surface S,, and
hence all the vanishing stresses but T33. The electrical

boundary conditions depend on the surface S and if the

¢ r
lUAr) are fully electroded, the
boundary conditions become D,=0 in Egs. (75) and (57); this
will be reported later [45]. Moreover, the governing
equations of quartz bar can be specialized to study its
nonlinear torsional motions in the sense of Saint-Venant by
the use of the displacement field (46) together with the
condition [46]

edge boundary surfaces Se(=A

_ (0,1) . (1,0) (m,n) _
Uy =X, uy PR AN s Uy -wcmn (83a)
and
(0,1) (1,0)_ _,
ul U, = -WXg (83b)
Here, wzwl2 denotes the uniform rate of twist and Cmn is a
constant.
Linear Bar Eguations - Dropping out all the
terms involving nonlinearity, namely,
o (m,n) _ (mIN)_ (mrn)__ (mln)_
.Jkl =0, Nk = Rk = N3k = 0
I(m+a+c, n+b+d): I(m+a+C+e, n+b+d+f): 0 (84)

in the macroscopic electroelastic equations of Section 5,
the fully linear governing equations of gquartz bar are
obtained. They are the macroscopic equations of motion as

(m,n)
k

< (m,n) _ (m=1, n)_ {m, n-1}
T3k mle nT2k P




- QAk(m'n) = 0 on LT (85)

the associated boundary conditions of tractions as

*(m,n) _ (m,n) _ .
K K = 0 on deT (86)
*(m,n) _ (m,n}) _

T, T3y = 0 on A,xT {87)

the macroscopic charge equation of electrostatics (63), the
distribution of electric field (67) and that of strain by
o (m,n) _ {(m,n)
5kl = e (88)
ne constitutive equations for the gross electric displace-
ments (72) and those for the stress resultants in the form

N
~ {m,n) _«

T, - T I (PICI)_ C E (pIQ)) (89)
<1 p+q=0 (mM+*p, n+q)

(Cklrtsrt rkl r

the boundary conditions of surface charge (75) and (76},
those of mechanical displacements (77) and those of electric
ootential (78), and the initial conditions (79)-(81). The
linear governing equations of quartz bar recover those by
the zuthor 71, who has employed a semi-variational aporoaczh
i deriJéEion.

n

in n

Cnlgqueness of Solutions - The solutions
of an initial mixed-boundary value problem defined by the
cne-dimensional linear governing equations of quartz bar are
ghown to be unigue by means of the logarithmic convexity

= N . .
argumentsLﬁﬂ. To establish this, as usual, the existence of

(1) jhg o (2)

is
(1)_g (205
k

two solutions arising from the same date d

nd the difference solution dk(zdk ) is

a
ed. Th= difference solution, that is, as before,

2r
)
(1) _,, (2) =1 L2

G, (=1, -u, )y and 3 evidently satisfies the

<

2neous parits of the governing eguations by virtue of
ilnearity of these eguations. Accordingly, it suffices
ow that the difference solution 1is trivial for the

mogenecus governing equaticsns in proving the unigueness
solutions. The treatment of uniqueness begins by defining
function F(t) by

r O Y ot ot Y
gm0 0
D (%
n
=Wl

"

Fit) log F{(t), t=T {90a)

F(t) = Fax

I pa,u, dA R Tl<t<T2 {90b)

E SN
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Togmrans

F(t)

0, tefe_,r,] and tgtfz,tl] (90c)

Here, Eqg. (90cC) clearly implies the unigqueness for all teT
but tglrl,rz }; F{(t) can be chosen, without loss of genera-

lity, as in this equation. Thus, only the interval
T=(rl,12) is considered on which F(t) is positive by defini-

tion, and this function should satisfy the condition of the
form
2 »e . .2
F"F=FF - F 20 , Tl<t<T2 {91) :

for the convexity of ¥ (t).
Now, the kinetic energy K, the internal energy W and the

total energy ¢ per unit length of the quartz bar are calcu-
lated in the form

K = _%*'g?&kﬁk - ; §+n:000k(m,n) ﬁk(m,n) (92)
o= —%_'g(rklekl+ E,D,)dA = _%_[TBR((m,n)u; (m,n)
N (mle(m—l, n) nTzk(m, n—l))uk(m,n)
L i T L S S BN CEY

o= K + W (94)

where the series expansions (46), the definitions (48), (53),
S5) and (5%) and the distributions (67) and (88) are used.
Likxewise, Eg. (90b) is evaluated with the result

N
F(t)s—— /o3 g, (men)y (mn) gy (95)
2 " k 3
L m+n=0

in the interval 1. Then, time differentiations of this
equation, by assuming the usual smoothness of functions,
l2ad to

o

F(t) =foT 6k(m'”)uk‘m'“’ ax, (96)
and L m+n=0
o H (m,n) ( )
F (t) = (2K +p: A m.n )dx, (97)
L m+n=0 )
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in which Egs. (53) and (92) are used. With the help of the
homogeoneous part of Eq. (85), Eg. (97) is expressed in the
form

N

Fo(t) =f[ 2K +¢ (T3k(m’n) - mTl,f“'_l’ n)
L m+n=0 -
_ {m, n-1) (m,n) {m,n)a
nT2k * Py )y ]dx3 (93)

Then, on combining Egs. (93) and (94) and integrating by
parts, Eg. (98) takes the form '

Fo(t) = =-2W + /[ 4de3+r + X (99)
with L
r =¥ (T (m,n)u (m,n)+ D (m,n)ﬂ(m,n))ll
%+n=0 3k k 3 * X3=0 (100)
¥ :I?:J (Pk(m,n)uk(m,n)m(m,n)(b(m,n))dx3 (101)

Lm+n=0
where Eg. (63) 1s taken into account. By the conservation
of energy and the initial conditions (79)-(81), the total
energy o 1s egual to zero. Besides, the boundary conditions
{75)-(73), (86) and (87) render r and X to zero, and then Eg.
(92) becomes

Fo(t) =7 4Kax, (102)

(35), (96) and (102), one writes the right

22 L2 N . {m,n)  (m,n) o {m,n). (m,n)
FZ = /¢ ¥ [t u 1.1u, a Jax
VU mereo DK k k k 3
N
- [ror  u tmendy (mem) gy g2 (103)
L m+n=0 K K
By virtue of Schwartz's inequality, one finds
2.0 .
F = = 0 (104)
on the interval 1, and after integration, this implies
T =1/ 1,1
Fle)yslr: ] ° 2 MEreylt /T on t (105)

Due to the continuity of F(t), F(Tl)=0, Eg. (105) shows

that F(t)=0 for the inte-val 1 as well, contrary to the
initial hypothesis F(t)>0. Hence F(t)=0 for all t¢T, and
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the difference solution is trivial, that is, the uniqueness
is established as in the case of polar rods, [48]. A ineorem of
uniqueness is concluded as follows.

T heor em-=- Given a regular region of finite bar space
B+3B with its boundary surface 3B(=StUSu=SoUS¢’

StnSu=SJ\S$=ﬁ) in the Euclidean 3-Space E, then there exists
at most one set of twice continuously differentiable

k(m’n)and ®(m,n) in B+3B at the time interval T,
obeying Egs. (63), (67), (89), (72), (88) and (89), and
satisfying the boundary conditions (75)-(78), (86) and (87)
and the initial conditions (79)-(81).

functions u

uartz Bar With Initial

Stresses - In the Xy - fixed system of Cartesian

convected coordinates, consider the piezoelectric medium
B+3B with its boundary surface 3B and closure B. The medium
is under initial stresses in its reference (initial) state
which is considered to be self-equilibrating following load-
ing 1n the natural state of medium. Then a small motion

is superimposed upon the reference state. For this motion,
thne set of fundamental egquations is consist of the stress
eguations of motion (1) and the boundary conditions of
actions (13) with the condition [49,50]:

u in BXT (106)

or
o _ . =

(tkl +1 krul,r),k poal = 0 in BXT (107)

= © 0 108

S nl(rlk +T1ruk,r) = on Sth ( )

th= charge equation of electrostatics (3), the strain-mechan-
izal displacement relations:

Sy € -5 ) in BxT {109)

th2 electric field-electric potential relations (6), the
constitutive relations

- C (110)

%1 ° “k1mnSmn T Cmk1Em
and Eg. (11), the boundary conditions of dislacements,
surface charge and electric potential (14)-(16) and the
initial conditions (17) in the spatial (final) state.



In th2 above equations; Tyt uk, a, and so on indicate small

k
incremental guantities superimposed upon those of the refer-
o} o .
ence state denoted (o) such as (Tgl,uk, tk). The incremen-

tal components of displacements u, and the electric potential

k
? are represented by the series expansions (46). By parallel-
ing to the derivation in Section 5, the macroscopic

equations of thin quartz bar with initial stresses may be
established by means of a variational principle [28] and the
series expansions (46) as

< (m,n) _ (m-1, n) _ ({m, n-1) (m,n)
T3y mT ¢ nTHy *Py
Lo (M) ogolmn) g, (men) g oy Lkt
k k k
*(m,n) (m,n) o (m,nj, _
T, (T3k + N3, ) = 0 on A/xT (111)

with the definitions (48) and (50)-(52) in terms of the
incremental quantities, and alike [51].

7- COMCLUSION

The main result presented herein is a set of one-dimensional,
nonlinear electroelastic equations useful for analyzing wave
propagantion and vibrations in guartz bars. These governing
equations of successively higher orders of approximation are
deduced from the three-dimensiocnal theory of piezoelectricity
by a consistent method of reduction. That is, the variation-
al principle (34) together with the series expansions (46)
is used to derive the governing equations of quartz bar in
which account is taken of only the elastic nonlinearities.
The resulting equations incorporate as many higher order
effects as deemed necessary in any case of interest by the
proper truncation of the series expansions. Thus, the
customary use of matching coefficients [6] is eliminated in

a rational way. The nonlinear electroelastic equations
describe all the higher order stretching, flexure and torsion
of thin piezoelectric bars of uniform cross-section. Further,
they are easily seen to reduce to the dynamic equations of
bars by Mindlin [6,52], Bleustein and Stanley [53], and the
author [7,8,51,54], as well as several authors mentioned by
them.




The variational principle (33) is obtained from Hamilton's
principle by modifying it through Friedrichs's transforma-
tion. As its Euler equations, the principle leads to all
the fundamental equations of piezoelectricity but the
initial conditions. By dropping out the nonlinear elastic
terms, the variational principle can be specialized to
contain some of earlier variational principles [1,6,25,29,30,
32,33,39,55,56]. The principle permits simultaneous
approximation on all the field variables, and hence it is
most frequently desirable and compulsory in selecting the
trial functions of approximate direct solutions [34,35,45].
Further, special motions are pointed out, the linearized
governing eguations and the electroelastic equations in the
presence of initial stresses are recorded for the quartz

bar of uniform cross~section. The uniqueness is examined in
solutions of the initial mixed-boundary value problem defined
by the linearized governing equations, and the sufficient
conditions for the uniqueness are enumerated by means of the
logarithmic convexity arguments. It is worth noting that
the unigueness is established even though elasticities
neither possess major symmetry (12) nor satisfy a
definiteness condition of energies [47, 56].

In closing, the results presented herein can be readily
extended to the case in which the thermal effect [57—60],
and/or the mechanical effect of the electrode coating [8],
are taken into account. Likewise, for a piezoelectric bar
with temperature-dependent properties [61], the nonlinear
electroelastic equations of higher orders of approximation
can be formulated. Further, it is worthwhile to conclude
the paper that work [45], is now in progress for certain
vibrations of gquartz bar, and it will be reported elsewhere.
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CHAPTER 4
VIBRATIONS OF PIEZOELECTRIC DISCS
UNDER INITIAL STRESSES

ABSTRACT

A system of two-dimensional equations is derived to govern
high frequency motions of piezoelectric discs (plates)
under initial stresses. The approximate governing equations
are deduced from a three dimensional quasi-variational
principle of piezoelectricity by expanding the electric
potential and the incremental components of mechanical
displacement in a series of Jacobi's polynomials. These
equations in an invariant form are applicable to all the
types of extensional, flexural and torsional motions of
plezoelectric strained discs. Besides, t'ey incorporate as
many higher order effects as deemed necessary in any case
of interest by a proper truncation of the series. Further,
some special cases, and in particular, the case of
piszoelectric unstrained discs and the uniqueness for its
solutions are indicated.

Kev Words: piezoelectricity, quasi-variational principles,
plate vibrations, initial stresses, discs.

1- INTRODUCTION

The mathematical modelling of the dynamic response of
plezoelectric plates was extensively studied in the litera-
ture , and it was reviewed by several authors (e.q.,ﬁ—3}).
“lost recently, Gerber and Ballato [4] provided almost a
complete list of pertinent puplications dealing with
dynaniic problems of the piezoelectric elements. In view

of these, it aopears that the application of initial
stresses or strains may be utilized to control the perform-
ance of certain plezoelectric devices. However, the

effect of initial stresses in plezoelectric elements was
treated only in a few particular cases. Especially, the
propagation of surface acoustic waves was investigated

both analytically and experimentally in a piezoelectric
continuunm with initial stresses [5,6]. In addition, a
guasi-variational principle was recently derived to govern
the motions of piezoelectric strained continua [7]. Now,
an attempt is made to develop consistently the two-
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dimensional equations in an invariant form, of successively
higher orders of approximation for piezoelectric strained
discs of any geometrical shave.

The presence of initial stresses or strains may significantly
change the static and dynamic behavior of structures
(e.g.,B,9). Revealing this fact, Thurston [10. studied the
wave propagation in stressed crystals under hydrostatic
pressure. Herrmann and Armenakas [ll] investigated the
vibrations and stability of elastic plates under initial
stresses. Further, Lee and his colleagues (e.g.,[lZ,lﬂ)
treated the high-frequency vibrations of crystal plates so
as to predict changes in the resonant frequencies due to
initial stresses. Additional references dealing with the
effect of initial stresses in plates were compiled by the
author [14] . Moreover, in the absence of initial stresses,
one should mention the recent works of Bogy and his students
[15,16], Karlash [17], Zaretskii-Feoktistov [187 , Baboux
and his colleagues [19] and Pan-fu [20] for various problems
of piezoelectric discs. As for piezoelectric plates or
discs with initial stresses, this is preciselv the topic of
this paper.

In this paper, the method of reduction due to Mindlin [21]
is applied to derive a system of two-dimensional governing
equations of piezoelectric plates (discs) under initial
stresses. In the first stage, the three-dimensional differ-
ential equations of piezoelectric strained continua are
expressed by means of a quasi-variational principle Ei .
Then, the geometry of a piezoelectric disc is described,
certain regularity assumptions are introduced, and the
electric potential and the incremental components of disc
are expanded in a series of Jacobi's polynomials. Also,

the higher orders components of stress, electric disvlacements
and surface loads are defined in consistent with the series
expansions. In the next stage, the governing equations of
piezoelectric strained discs are consistently and systemat-
ically formulated by using the quasi-variational princivole
together with the series expansions of field quantities.

The governing eguations incorporate as many higher order
effects as deemed desirable, and they take into account for
the coupling between extensional, flexural and torsional
modes. Lastly, special cases and in particular, the case of
piezoelectric unstrained discs are vointed out, and the
results are briefly discussed.
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NOTATION

In the paper, standard tensor notation is used in a
Euclidean 3-space. Accordingly, Einstein's summation
convention is implied for all repeated Latin indices (1,2, 3)
and Greek indices (1,2). Superposed dots are assigned for
time differentiations, primes for partial differentiations
with respect to the thickness coordinate x3, and commas and
semicolons for partial and covariant differentiations with
respect to space coordinates, respectively. Further, a
piezoelectric region B with its boundary surface
9B(-StUSu=SdUSD) is referred to by a fixed, right-handed
system of curvilinear coordinates xX in the space. The
symbol B(t) refers to the region B at time t and np to the
unit outward vector normal to 9B. Asterisks are used to
indicate prescribed quantities. The time interval is
denoted by T=[tp,t;) and the thickness interval by H=[-h,h].

2- THREE-DIMENSIONAL EQUATIONS OF PIEZOELECTRICITY

The three-dimensional fundamental equations to govern the
motions of a piezoelectric strained continuum are sumarized
in differertial form as follows [1,9,5,6].

Divergence Eqguations:
Tij;i -obJ =0 ; ] fikuj;k 43 (1)
D7: 1 =0 (2)
Gradient Equations

S..= %(u‘ LU, L) (3)

E.=-% . (4)

Constitutive Egquations

i ijkl.  _ kij

¢ 7=C skl C Ek (5)

placiikg  Lclig, (6)
jk B

o g -



Boundary Conditions

Ty - nTH7=0 on S
*

4, - u.=0 on S
1 i
* i

o - n,D =0 on S
*

& = ¢ =0 on S

In the above eguations, le is the stress tensor, u,.
incremental displacement vector,
bj(=u~) the acceleration vector,
initial and ircremental stress tensors,
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o the mass den51ty,
golj and

{7)
{(8)
(9)

(10)

)
[

the

Di the electric

displacement vector, Ej the quasi-static electric field
vector, 3 the electric potential, Sij the incremental strain

tensor, Td (=n; “13) the stress vector and o(—nlDl)

rface charg Also, Cl]k1

Cl]klzcjlklzckllj,Cljkzclkj'cljzcjl

Cle and Clj denote the elas—

3- A Q2UASI-VARIATICNAL PRINCIPLE

The fundamental differential equations
lte:natively expressed by means of a quasi-variational
i

a
o

nciple in the form.

(12)

(13}

(14)
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SIS =71 fr _pt. i__* -
~[: ‘o dt ‘s D ,idwdv +IS$niD a }45¢ds} (15)
1 ij
Jl' =r f - ={u. .+u. 5T
8T =i dt.B[sij 2(u1;3+uj;i)JST av (16)
- i
U r - ;
GJZ fp defy (B +d ;)eD7av (17)
. Fop id_Aidkle _kiJ
SL, =7 ac’ . [o (C S, 1°C Ek)jssijdv (18)
: . , i .ijk ij
sL =y ats/ [p7-(c Sk *C Ej)]SEidV (19) .
sk’ =S dtf. (u. - u.)sTids
K, =1 s i i’$ (20)
e s !
5f\2 ".T ° g (¢-¢)60d3 (21)
p
and
] L. % J - * J J
N __Bo{[ui(x st W, (% )]Sui(x 't
3 * i,.3
+Dgi(x ) v (k7] suT (x7, e ) av (22)
o) 3 * 3 1
N :;Bo[¢(x3,to)—v (xj)]6¢(xj,to)dv (23)

The quasi-variational principle (12) is fully unconstrained,
and 1t evidently leads to all the fundamental differential
egquations of plezoelectricity (1)-(12) as the appropriate
Euler-Lagrange equations; and conversely, if the fundamental
differential equations are met, the quasi-variational
principle 1s clearly satisfied. This principle is recently
deduced from Eamilton's principle by the author [7], and it
can be similarly obtained from the principle of virtual work
as will be reported in a forthcoming communication.

4~ GEOMETRY OF A2 PIEZOELECTRIC DISC

Consider a piezoelectric disc of any geometrical shape,
embedded in the Euclidean 3-space. The piezoelectric disc
of thickness %h is referred to the system of curvilinear
coordinates x , with the faces, of area A, at x3=%*h and with
x? the coordinates on the midplane which intersects the
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right cylindrical boundary of the disc in Jordan curve C.
The disc is coated with perfectly conducting electrodes
on beth its faces. Further, one should recall the
fundamental assumption of the form

(2h/d)<<1 (24)
where d is a characteristic length of disc. This allows

one to treat the disc (plate) as a two-dimensional mathemat-
ical model of a three-dimensional body.

A X
ht G x*
h-“ - T e
+

Figure 1. Disc geometry

5- SERIES COF ELECTRIC POTENTIAL AND INCREMENTAL DISPLACEMENTS

The fundamental assumption (24) and the absence of any kind
of singularities as well as the suitable regularity andg
smocthness assumptions are considered for the piezoelectric
disc region B+3B. In addition, all the field functions
together with their derivatives are assumed to exist and to
e continuous in the closure of disc B(=BU3B), and not to

vary widely across the disc thickness. Thus, the electric
potential and the incremental components of displacements
of disc are apprcuimated by a series in the thickness
coordinate as

(1) 3, (n)

HEPEA : ul™ ), (25)

s(xd,t)= I Pn(x3) s (x™,t) (26)
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Here, the functions Q; and B, are consistently chosen
as Jacobi's polynomials [22,23] in the form

_ B 3
Q- =P —Jn(x ) (27)
with

2 3 3
Jn(z)=1,z, 1-2z°, z- CEARERRY (28)

The choice of Egs. (25})-(27) as a starting point leads

to the governing equations of piezoelectric disc in a

consistent and tractable manner; this will be shown below. '
Moreover, in lieu of Jacobi's polynomials, Legendre's

polynomials, power series and trigonometric series can be

similarly chosen [1-3]. The present choice, however, is

more fruitful in the case of circular and elliptical discs.

6—- HIGHER ORDER COCMPONENTS OF STRESS AND ELECTRIC
DISPLACEMENTS AND SURFACE LOADS

In accordance with the foregoing assumptions and the series
expansions (25)-(27), the two-dimensional stress and
electric displacement components and surface loads of order
n in the form

[r23,0% nd ,0%] =; [(6%F, %3 502,07 d Jax®
(

n) (n)(n) (o) ¢
ia 13 _ i(), a3’ 3
[To(m+n)’To(m+n)]—IH[(°o Im’9%% ]rn)Jn]dx

o) 3

3a 33-, - 3
No(m+n)’No(m+n) —JH[(FO Jm'Oo‘Jm)jn]dX

a 3 _ 3a 33~
[Fo(m+n)' Fo(m+n)]_[(oo In’ %0 Jm)Jn]|H

3 Ts33 p3
l--F(n) ’G(n)]_[(0 D7), ] I

. N ]
[r; .o, J=r, [(r],c7 )3, ax"] (29)-(32)
{n) (n)

and

(Jm,JmJn)dx (33)

are defined.

>y — — ——
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7- HIGHER ORDLR, EQUATIONS OF MOTION AND ASSOCIATED MNATURAL
TRACTION BOUNDARY CONDITIONS

To derive the higher order equations of motion of piezoelec-
tric strained disc, the variational integral (14) is
splitted into the area integral over the midplane A and

the integral across the thickness, namely,

817, =y dt{s, dAfH[(cékuj; . o) ; —pbjjéujdx3

¢ seas s [1l-n (oMo 0 k)] suy ax>} (34)

Here, the tractions are taken to be prescribed on the edge
boundary surface of disc, and accordingly, the displacements
are specified on the faces. Following the method of
reduction as in [21], the series expansions of incremental
displacement components (25)-(27) are inserted into Eq. (34),
and 1t 1s integrated with respect to the thickness coordi-
nate. Then, using the two-dimensional divergence theorem
and regrouping the higher order components of stress and
surface loads, one obtains

1

Iy =rpdt
1

(u42

j (n) (n)
& X5 5uj dA+§C Xn ] ax } (35)

This =quation leads to the equations of motion and the
natural boundary conditions, of order n for arbitrary and
independent variations 6ui(n) in the quasi-variational
equation (13). Thus, the eguations of motion of order n
are expressad by

Y]:TQJ —Nj+FJ+ T 8a uj + €3 j)
n ‘n;e non o o(m+n) m;a o (m+n) . 8
Yoa 3 3 g Y e
- (N u-__+N u-’ )+ L (F u- |
=0 o(m+n) m;a o(m+n) m =0 o(m+n) m;a
3 J N J
Fofmenm ¥ 7P F Innlp=0¢ n=1,2,...,N on A (36)
m=0
Besides, the natural boundary conditions of order n are
written in the form
SIS aj, o pas ] a3 j
“n _Tn -na[Tn +mEO( O(m+n)u(m)78+To(m+n) u(m))]=0

[
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n=1,2,...,N along C (37)

8- HIGHER ORDER, EQUATIONS OF ELECTROSTATICS AND ASSOCIATED
NATURAL BOUNDARY CONDITIONS OF SURFACE CHARGE

By paralelling to the derivation above, the variational

integral (15) is evaluated, the definitions of Egs. (29)-(32)

are used, and then the equations of electrostatics of order '
n are expressed by

3

Y =D2 -D =0; =1, eee,N A

"2 G TP ny 07 N2 on (38)

and the natural boundary conditions of surface charge of

order n by

+G

*— * Qa
T P (7 Pin

=0; n=1,2,...,N along C (39)
where the surface charges are taken to be prescribed only
on the edge boundary of disc.

9~ HIGHZR ORDER, DISPLACEMENT AND ELECTRIC POTENTIAL BOUNDARY
CONDITIONS

The electric potential and the mechanical displacements are
considered to be given on the faces. Accordingly, the
variational integrals (20} and (21) are carried out on A.
Then, the n~th order boundary conditions of displacements
are optalined as
- *
glnh_ rim

u. =0; n=1,2,...,N on A (40)
1 1

and those of electric potential as

t(n)—¢in)=o; n=1,2,...,N on A (41)

10~ DISTRIBUTINNS OF INCREMENTAL STRAIN AND ELECTRIC FIELD

By inserting the series expansions (25)-(27) into the
variational equations (16} and (17), and then integrating
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the thickness coordinate and using the

higher order components of stress and electric displacements,

one readily arrives at the distributions
strain and those of electric field in the form
N (n) (n) -
(S' ,SH3,EV ,E3)= T (s Int S In
t D [al n:O a8 o
(n) (n) -~  (n) (n) -
+Sa1 jn,533 Jn’Ea n'E3 Jn)
where
S(?): ;(u(n)+u(n)), s () _g(n) g (n)
x3 2 i3 Bia s a ol
glm_ 1 () o(n)_ 1, . gt ()
M 2 al 2 " 3ia 33 3
and
{n) (n) (n) (n)
E, = =7 o ! E ==¢
are introduced.

11-

)

MATROZTOPIC CONSTITUTIVE EQUATIONS

of incremental

(42)

(43)

(44)

the h2lp of the distributions of electric field and
2mental strain (42)-(44), the variational eguations
and (19) are evaluated and hence the macroscopic
titutive eguations of order n are obtained as follows.
. N . . .
23 . rmpajey o(m) ajgs o {m) ajBs gf(m)
(n) “;OLAm+n Sg, *2Brin’ Sg Anin Sai (45)
L ontJ33 o (m)_ Baj . {m) 3aj o (m)
cin S3 (Alvn Eg + B - Ey )]
3 N (m) 33335 (M), g3dssgim)
- - 3J3y g
(n) : [Bn+‘ S8 *2lCnin S 8 * Bnim 831 ) (46)
L ~2333o(m) 03] ~(m) 333 . (m)
cm+n s, (Brim B, *Coen B3 )]
4 - . a2y (m) 183 (m) aB 3 {m)
(n) — _%y (A mn e +2(Bm+n Sg *Anen Sg1 ) (47)
232 . (m) a8 (m) a3 (m)
men o3 Arin Bs  * Bpin By )]
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N
o3 = 5 [B32y s!™ioqersis!™upizs 5™
(n) meQ ~ nrm T3y m+n g n+m "8l
~r33 o (m) 38 (m) L33 . (m)
men O3 BBy *CqinES )] (48)

where the higher order components of material constants are
defined by

1ee.] i...3 ot i...] i...37 3
( men 7 Boen ) .H(C JmJn,C JmJn)dX
P ic..j;7 r 3
(um+n )—IH(C JmJn)dX (49)

12- HIGLILR ORDER INITIAL CONDITIONS

As before, the variational egquation (23) is evaluated, and
the initial conditions of displacements and electric
potential of order n are expressed by

{(n)  _«a _x(n) a,
ug (x ,to) vy {(x7)=0 ,
- (n) o _ L (n) o
us (x ,to) W (x7)=0 (50)
*
s e - 81 (%) =0 (51)
where v;(n), w?(n) and‘f(n) are the given functions of

incremental displacements and electric potentials at time
t=t .
o

13- GOVURNING ETUATIONS OF PIEZOELECTRIC STRAINED DISCS

The system of two-dimensional equations of piezoelectric
discs (plates) under initial stresses consists of the series
expansions of incremental strain and electric potential (25)-
{27), the higher order equations of motion and elecrostatics
(36) and {38), the associated natural boundary conditions
(37) and (39)-(41), the distributions of incremental strain
and electric field (42)-(44), the macroscopic constitutive
equations (45)-(48) and the natural initial conditions (50)
and (51).




14- SPLECIAL CASES

Trne approximate, successively higher orders governing
equations of piezoelectric strained discs are formulated in
an invariant form, and hence they are readily applicable

to an arbitrarily shaped disc using a particular coordinate
system most suitable for 1ts geometrical configuration.
Among those, the resulting equations for a circular discs
can be glven by using the system of polar coordinates,

that is, xl=r , x2=9¢ and x3=z. Likewise, the system of
elliptical coordinates can be selected for an elliptical
disc under initial stresses.

In the absence of initial stresses, the two-dimensional
equations derived may be reduced to those of piezoelectric
unstrained discs. These linear governing eguations
accommodate high frequency motions of a piezoelectric plate
{disc), and have a unique solution in each case of interest.
The boundary and initial conditions (37) and (39)-(41)

which now exclude the terms involving initial stresses and
hence become linear are sufficient for the unigueness.

To prove this, utilizing the technique due to Knops and Payne
~] and following the author: L25] the existence of two
possible solutions is considered and the homogeneous
governing equations are formed for the difference of solu-
tions. Then, a logarithmic function is introduced, and it
is calculated in terms of the field quantities of disc. By
using the convexity of the function and Schwartz's inegual-
itv, it is shown that the homogneous problem may possess
only a trivial solution. Accordingly, the linearized
version of the initial and boundary conditions (37)-(41) are
found to be sufficient for the unigueness [26].

=

u

15- COUICLUDING REMARKS

Presented herein is the system of two-dimensional egquations
of successively higher orders of approximation for all the
types of extensional, flexural and torsional motions of
piezoelectric discs (plates) under initial stresses. These
governing equations are systematically and consistently
deduced from the three-dimensional equations of piezoelec-
tricity by means of a quasi-variational principle together
with the series expansions of the field quartities. The
affects of elastic stiffeness and inertia of electrodes are
omitted, but those of shear and normal strains, full
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anisotropy and heterogeneity are all taken into account.
Then, some special cases, and in particular, the case of
unstralined pi=2zoelectric disc and the uniqueness for its
solution are pointed out. In closing, the case of circular
discs with and without initial stresses 1s reported in the
reference [27], and the detailed analyses of certain motions
of strained elliptical discs and the extension of the
present results to those of composite discs with initial
stresses will be studied in a forthcoming memoir.
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CHAPTER 3 v
SHELL THEORY FOR VIBRATIONS OF PIEZOCERAMICS
UNDER A BIAS

ABSTRACT

This paper 1s addressed to a consistent derivation of the
shell theory in invariant form for the dynamic fields super-
posed on a static bias of piezoceramics. In the first part
of the paper, the fundamental equations of piezoelectric me-
dia under a static bias are expressed by the Euler-Lagrange
equations of a unified variational principle. The varia-
tional principle is deduced from the principle of virtual work
by augmenting it through Friedrichs's tranformation. In the
second part, a set of two-dimensional, approximate equations
of thin elastic piezoceramics 1s systematically derived by
means of the variational principle together with a linear
representation of field variables in the thickness coordi-
rate. The two-dimensional electroelastic equations accounting
for the influence of mechanical biasing stresses accomodate
all the types of incremental motions of a polarized ceramic
shell coated with very thin elecrodes. 1In the third part,
emphasis is placed on special motions, geometry and material
of piezoceramic shell. Especially, attention is confined

to the linearized electroelastic equations of piezoceramic
shell, and the uniqueness in their solutions is established
cy the sufficient boundary and initial conditions.

I~ INTRODUCTION

PIEZOCERAMICS are a class of synthetic materials made of
anisotropic crystalline powders by pressing, casting, or ex-
trusion, and sintering, and then by prepolarizing under a
strong electric field. This poling process induces the
plezoelectric properties in ceramics; this is analogous to
the magnetizing of magnets or the polarizing of electrets.
The plezoceramic materials are chemically as well as physi-
cally stable and robust, insensitive to aging and, in par-
ticular, potentially low cost. They can be manufactured in
a wide range of compositions with desirable properties and

a variety of advantages shapes and sizes, as the structural
elements of acoustic devices. The characterictics and ap-
olications of piezoceramics, including the elastic and piezo-
electric constants, are availeble [l]—[S]. Owing to their
specific features piezoceramic elements and especially, those
elements in the shape of thin shells are quickly replacing
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natural piezoelectric elements in recent commercial applica-
tions. A review of recent contributions on the dynamic app-
lications of piezoelectric and piezoceramic elements can be
found [6], [7].

In acoustic devices, biasing stress or strain and/or elec-
tric field is a new design feature, and their introduction
may be effectively utilized to control the performance of
piezoelements, and to select the most suitable operating
conditions, in these devices. The presence of a biasing
state induced by external perturbations like thermal, mechan-
ical and electrical fields and even magnetic fields can sig-
nificantly affect the static and dynamic behavior of struc-
tural elements (for instance, beams [8], [9], plates [10]-
(12] and shells [13], [14]) and the characteristics of BAW
and SAW [15]- [19]. In an initially unbiased solid mediunm,
the linear theory of electroelasticity provides an extremely
accurate description of waves and vibrations with small am-
plitudes. However, in a solid medium with induced external
perturbations and/or intrinsic nonlinearities, the linear
theory becomes unsatisfactory in describing its motions.
This fact was widely recognized, and tackled by many inves-
tigators in elasticity (for instance, [20]- [22]) and elec-
troelasticity [23]- [26]. 1In elasticity, the fundamental
differential equations of incremental motions were established
and their various applications were exhibited [26]- [28].
These equations make available an invaluable tool in inves-
tigating the stability of initial deformations of a solid
medium. In electroelasticity, Tiersten [24] derived a prop-
erly invariant set of the nonlinear differential equations
including thermal effects by means of a systematic applica-
tion of the fundamental axioms of continuum physics. From
these general equations, Baumhauer and Tiersten [29]- [31]
cbtained the differential electroelastic equations for small
dynamic fields superrvosed on a static biasing state of solid
medium, and also, for intrinsically nonlinear fields. More-
over, the fundamental equations of incremental motions were
expressed as the Euler-Lagrange equations of variational
principles in elasticity [32], [33] and, in piezoelectricity
[34]- [36]. A clear and elaborate axposition of the subject
was presented by Truesdell and Noll [37], Thurston [26] and
Bolotin [27].

To reveal the effect of biasing states on the characteris-
tics of vibrations and waves in elastic media, many investi-
gators considered the effect due to the electrode-induced
thermal stresses, mounting and acceleration stresses, as
well as stresses resulting from the externally applied for-
ces and pressures [38]-[49] and [6], [7] with a list of

-
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extensive references on the subject. In their ploneering
works, Truesdell [38], Toupin and Bernstein [21], Thurston
[39]—[41] and Brugger E4l] treated some small-amplitude wave
propagations in finitely strained elastic materials.
Nalamwar and Epstein [}2] reported the propagation character-
istics of SAW in a strained piezoelectric medium, including
the experimental and computed results. Also, the influence
of temperature-induced biasing strains [43], of flexural
biasing stresses [44], and of biasing electric field [45]
was investigated on the propagation characteristics. Sinha,
Tanski, Lukaszek and Ballato [18] described some analytical
and experimental results on the extensional and flexural
stress-induced effects on the propagation of piezoelectric
surface waves in crystalline quartz. The author [46] dealt
with high-frequency motions of piezoelectric plates under
initial stresses, and he and nanI'D. [47] with dynamics of
piezoelectric strained rods. Yet an investigation conceming
incremental motions of piezoelectric ceramic shell under a
bias is unavailable in the current open literature; this is
precisely the topic of this paper.

Studies concerning the dynamic analysis of piezoceramic shell
were devoted either to solutions of their specific motions
or to derivations of their two-dimensional, approximate
electroelastic equations. Of the former, the radial, flexu-
ral and torsional vibrations as well as the propagations of
axisymmetric and non-axisymmetric waves were investigated
both analytically and experimentally in spherical and cylin-
&rizal thin shells with electroded or unelectroded surfaces,
polarized in an axial, radial or circumferential direction
and driven electrically or mechanically [48]-[57]. The
analytical treatment of radial motions includes a piezoce-
ramic hollow sphere [48], a piezoelectric sphere coated
with electrodes on its surface in a compressible fluid [49],
and a piezoceramic hollow sphere or cylinder filled with a
compressible liquid and immersed within a fluid of infinite
extent [50]. The numerical analysis of harmonic vibrations
of a piezoceramic shell of revolution, coated with elec-
tredes on its outer and inner surfaces was reported [51].

The propagation of axisymmetric and non-axisymmetric waves
was considered in a piezoceramic hollow cylinder with radial
and axial polarizations [52]-[54]. The interaction effects
of the radiation load and various modes of vibrations of a
piezoceramic cylindrical shell were examined for the case
when the shell with thickness polarization is partially in
contact with an acoustic medium and surrounded by a soft
shield [55]. vVarious types of vibrations of a piezoceramic
hollow cylinder were studied_by Paul and Venkatesan [s6],
and Matrosov and Ustinov Lﬁ?] who cited additional works for
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special motions of piezoceramic shells.

Derivations of two-dimensional equations of piezoelectric
and piezoceramic shells were reported by a number of inves-
tigators [58]-[79]. These governing equations of shells
were immensely more tractable than the three-dimensional
equations of piezoelectricity, and hence, they are prevalent
by computational economy. The fundamental equations of pie-
zoelectricity were reduced to the equations of piezoceramic
shells by means of a method of reduction that involves an
averaging procedure across the thickness and a set of series '
expansions for the field variables in terms of the thickness
coordinate of shell. Of the methods of reduction [80], the
method of symbolic integration [58], the asymptotic method
[59] and especially the variational method [60]-[62] were
applied together with the power series expansions |[63], [6{
and the series of Legendre and Jacobi polynomials [64]-[66].
In a noteworthy earlier attempt, Toupin [67] formulated the
piezoelectric relations and equations of eguilibrium for

a polarized elastic spherical shell. Within the
context of thin elastic shells [81], a theory was developed
for vibrations of piezoelectric ceramic shells of revolution
[68], [69], radially and tangentially polarized piezoceramic
thin shells [70], [71] and viscoelastic_piezoceramic shells,
including the effect of temperature [72]. Chau [62], [73]
dealt with a theory of piezoelectric and piezoceramic shells
and Khoma [61], [66] with that of piezoelectric and thermo-
piezoelectric shells. Kudryavtsev, Parton and Senik [74],
[75] derived a refined theory of piezoelectric ceramic shells
that takes into account shear strains, as did Rudnitskii and
shul'ga [76]. By use of Mindlin's variational method [82],
(83], the author [60], ([63], [65], [77]-[79] established a
theory of various types of low and high frequency as well as
linear and nonlinear vibrations of piezoelectric and piezo-
ceramic shells and thermopiezoelectric laminae, including
the sufficient conditions for the uniqueness in its solutims.
Besides, a theory of piezoelectric membranes was obtained as
the special case of a shell theory where account was taken
of electro-magnetic effect [64]. A survey of various theo-
ries and problems of piezoceramic shells, together with an
update list of references, was compiled [6], [7].

The objective of this paper is {i) to express the fundamen-
tal eguations of piezoelectric medium under a mechanical
bias by the Euler-Lagrange equations of a unified variation-
al principle, by use of this principle together with a lin-
ear representation of field variables; (ii) to establish a
two-dimensional theory for the motions of polarized ceramic
shells coated with thin electrodes, accounting for the
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influence of mechanical bilas; and then, (iii) to consider
special cases and, in particular, the linearized equations
of piezoceramic shells and to examine the unigqueness in their
solutions.

In the remainder of this section, the content of the paper
is specifically given, and then the notation to be used
herein is introduced for convenience. To begin with, the
three-dimensional fundamental equations of piezoelectricity
with extensions to the effects of mechanical bias are ex-
pressed as the Euler-Lagrange equations of a unified varia-
tional principle deduced from the principle of virtual work
by means of Friedrichs's transformation in Section 2. In the
next five sections, the set of two-dimensional approximate
equations 1is systematically derived for a prestressed piezo-
ceramic shell by use of Mindlin's method of reduction.
Section 3 contains a description of the geometry of ceramic
shell and also the relationships between space and surface
tensors needed in the subseguent development. In Section 4,
a linear representation is introduced for the mechanical
displacements and the electric potential, and then, the re-
sultant field quantities averaged over the thickness of pie-
zoceramic shell are defined. The distributions of mechani-
cal strain and quasi-static electric field are given and the
macroscoplic constitutive relations, both linear and nonlin-
ear, are formulated for the piezoceramic shell in Section
5. The two-dimensional field equations of incremental mo-
tions and the associated boundary conditions are consistently
established by use of the unified variational principle to-
gether with the linear expansions of field wvariables, and
the 1nitial conditions are recorded at the perturbed state
of piezoceramic shell in Section 6. Similarly, the static
cgoverning eguations of piezoceramic shell are formulated via
a varlatioral procedure at the unperturbed state in Section
7. Special cases involving the polarization direction,
geometry and motions of plezoceramic shell are indicated,
and the governing equations of a biased piezoceramic plate
of arbitrary shape and those of an unbiased piezoceramic
shell are explicitly stated in Section 8. Also, the fully
linearized governing equations of piezoceramic shell are
given and the uniqueness of their solutions is investigated.
Some conclusions regarding the results obtained are drawn
in the last section.
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NOTATION

Throughout the paper, standard tensor notation is freely
used in a Euclidean three-dimensional space E. Accordingly,
Einstein's summation convention is implied over all repeated
Latin indices (1,2,3) and Greek indices (1,2) that stand for
space and surface tensors, respectively, unless they are put
within parantheses. 1In the space E, the xl—system is iden-
tified with a fixed, right-handed system of general convec-
ted (intrinsic) coordinates. All the field quantities are '
described in Lagrangian formulation, and a gquantity in the
initial state is designated by a zero index and a prescribed
quantity by an asterisk. Further, a comma stands for partial
differentiation with respect to the indicated space coordi-
nate, a superpcsed dot for time differentiation, and a sem-
icolon and a colon for covariant differentiaton with re- -
spect to the indicated coordinate, using the space and sur-
face metrics, respectively. Also, the symbol B(t) refers

to a regular, finite and bounded region B contained in the
space E at time t, B(=BU3B) to_the closure of the region B,
with its boundary surface %B, BXT to the domain of defini-
tions for the functions (x ,t), T=[t +t,) to the time in-
terval, and H=[-h,h] to the interval actoss the thickness

of piezoceramic shell. As for new quantities, they are de-
fined whenever they first appear.

NOMENCLATURE

xt a fixed, right-handed system of general convected
coordinates

2h thickness of piezoceramic shell

A, C area of the midsurface of shell, Jordan curve

ITEEE i<which bounds A
T J,toj,t J total, initial and incremental stress tensors

:U'Sifsij total, initial and incremental strain tensors
e, mass density of the undeformed body
Uiﬂﬁfui total, initial and incremental displacement
i _ vectors. o A
T ,TO,Tl total, initial and incremental stress vectors
n. unit outward vector normal to the boundary

surface 2B
D electric displacement vector
E quasi-static electric field vector
o surface charge
o electric potential
Ja oy electric enthalpy
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2 -VARIATIONAL FORMULATION FOR STRAINED MEDIA

Variational principles, both differential and integral types,
are widely appreciated in succintly expressing the fundamen-
tal equations of a medium. Besides, these priciples are
valuable in systematically deriving lower order field equa-
tions and directly providing approximate solutions, and hence
they are used for the purpose of this study as well. Pri-
marily, Tiersten and Mindlin [84], Tiersten [85] and EerNisse
[86] developed various variational principles in piezoelec-
tricity, as did Vekovishcheva [87] and_the author [36], [88].
In addition, Mindlin [89], Nowacki [90] and the author [65],
[91]-[93] presented some variational principles in thermo-
pilezoelectricity. However, only little effort was made to
formulate variational principles accounting for the effect
of biasing stresses [35], [36] in which Hamilton's principle
was used as the basis of derivation. 1In order to render the
present work self-contained, it is the purpose of this sec-
tion to derive a unified variational principle of piezoelec-
tric strained media by taking the principle of virtual! work
as a starting point. The reader can be referred to‘_/2]
for additional background information and to [6], [7] rfor
recent contributions on the subject.

To begin with, referring to a fixed, right-handed system of
general convected coordinates x~ in the space E, a regular,
finite and bounded region of piezoelectric elastic medium,
Bo+aBo, with its boundary surface 8B _ is considered at its
initial unperturbed or reference stafe at time t=t . At
this initial state, the piezoelectric region is sugjected to
a finite cdeformation due to static initial stresses, and it
is taken to be self-equilibrating. The piezoelectric region
acqulires 1its spatial (perturbed or final) state B+5B by an
additional vibrational or wave motion of small amplitude
which is superposed onto the finite static deformation of
piezoelectric region B_+3B_ at the time interval T [t ,t.).

N ) o o’ 7]

Now employing the Lagrangian approach, an extended veérsion
of the principle of virtual work is stated for the piezo-
electric region at its spatial state as an assertation

S8 T+ T+EXW=0 (5.1a)
with the denotations
el lj- _ l v = { .i'
sn=fg (T 8S;47D7SE AV, §Y=1/26/,0070, AV (1b)

*
k!

§W=] 5 (TL8U, ~056)dS
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where §*W stands for the work done by external mechanical
and electrical forces, and é* with an asterisk is used to dis-
tinguish it from the variation operator §. Integrating over
the time interval T, (1) may be expressed in the form

- Creeideid i _ i
8L, = aef - [(t] +t. )88, -D7SE Jav [pdtfgeasu, dv )
+detfaB [(r;l+ri)6ui+ 489]dS=0

with the definitions

le,téj,tlJ total (=tlj+tlj), initial and incremental R
- stress tefsors

© total (:Sij+sij)’ initial and incremental

. .,S87 ., ..
Slj’slj 1]

strain tensors

o mass density of the undeformed body

a Lagrangilan acceleration vector (-di)

U.,u?,u‘ total (=u2+ui), initial and incremental
displacement vectors

T ,1 .1 total (=ré+ri), initial and incremental
stress vectors

n. unit outward vector normal to a surface
element of 3B

electric displacement vector
quasi-static electri¢ field vector
surface charge (=n.Dl)

electric potential

© Q m O

By inserting the gradient equations by

k
= 1 =1
S;47E; #1207 (U s By /2(Ui;j+Uj;i) (3)

E.l =Ty (4)
into (2), applying the Green-Gauss transformation of inte-
zrals for the regular piezoelectric region, carrying out the
indicated variations, and then combining terms in the sur-
face and volume integrals, one obtains a two-field varia -
ticmal principle for the piezoelectric strained medium as

. i i i}
8C,0u; .0} =[ dtfp(L78u +L6¢)AV+[ dt[, o (L, 8u, +L5¢)dS=0 (5)

with the divergence equations of incremental motions by



Byamas

Lj:(tlj+t;kuj ) .-ral=0 in BXT (6)

L

’

D” =0 in BXT (7)

and the associated natural boundary conditions by

J..3 13,1k 3 . (o
= - + = -
Lo =73 ni(t tO u ;k) 0 on oBXT ()
% i . o
I'= ¢-n.D" =0 on <BXT (%)
* 1
as its LCuler-Lagrange equations. In éderiving (5), the
stress eguations of equilibrium and the associated bound-
2ry c¢conditions at the 1nitial state as
] ik, <7 3 - . — -
tl=Cer(sdenwd )] .20 in BxT (1Ca
Lomlto Loituo ks + )
. X i . o ]
Lrd=cdon ¢ (53+uj )=0 on :BXT (10z)
o o, 10 kK "o:k
are considered, the usual arguments are implied c¢cn ths in-
crements of field variaples [ll], [27], and the ccrnstraint
conditions of the feorm
cul-O, $e=0 in B(to) and B(tl) (11)
are Lmposed, and also the variation, diffsrentiztic
intecgration opsratcrs are taken to commute with crne
and trne variaticns to obev the axiom of conservatio
In corisr to describe completely the incremental mciions of
tliezoslectric strainad medium, the variational princicle (3)
1s surplemented by the gradient eguations (3) and (4), and
the ceonstitutive relations in the form
i1 Y 3t i STH .
et (= +— ), Dr=- T (12)
(=B aS .. [l
1313 Ji t
where Hle, ., E_, to“) stands fcr an electric enthalpy func-
tion whicA”contain$ the iritial stressss as parametzers 128,
the boundary conditions as
u_ ~-u*=9 cn B X7 (22)
1 1 4
t = =0 cn 62 XT (1s)
inoadiltion to (%) and (2), the initial conditions of the
Lot )= (x9=0, O (x?,t ) -wt (k7)) =0 in Bit_) (15)
e O C O
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¢<xi,to)—wﬂxi)=o in B(to) (16)

and the constraint conditions (11). These conditions prev:it
a simple and free {(unconstrained) choice of trial functions
in direct approximate solutions, and hence the variational
principle (5) becomes almost always inconvenient in compu-
tation. To remove the constraint conditions, Friedrichs's
transformation is implemented [94], and accordingly, a dis-
location potential for each constraint is added to (5) so
that all the variations can be treated as free [95]. In
doing so, the variational integral (5) is expressed in an
augmented form (cf.,[28]) by

ij k i
5£3=-deth(5H3toju;iﬁuk;j)dV—dethpa su,;av
i . 3
+[pdtf g (r, 6u +080)dS+s [atfa® dvesfdt] o a”,as
4 45=
+5detfaB¢A 448=0 (17)

with the Lagrange undetermined multipliers Alj, Al, pl, n
and the denotations by

1 ij-. 1 2 i
AT = Zo.-=(u. . .tuL )]s K o=d (E+¢ )
17 Tk 2 : : 2 ¢
ij i:3 9:i it i (18)
3o i, 4 .
A 3-A (u.l ui), A 4—4(3 %)

where (10) and a linearized formulation of initial stresses
are utilized [28]. As in (2), by performing the indicated
variations iIn (17), using the Green-Gauss transformation of
integrals and assembling pertinent terms, the Lagrange mul-
tipliers are identified as
aPleetd, wTeopt, atert, wen Dteo (19)

by use of the fundamental lemma of the calculus of variations
Upoin substituting (19) into (17) and on bearing in mind the
usual admissibility conditions of field variables [36], one
concludes a unified variational principle for the incremen-
tal motions of piezoelectric strained medium as

P _ al ad

L b= 8d oi + 81 o8 0 (20a)
with the admissible state

. . 1] '
Ac=iu., S.., t7°, 17; ¢, E.,, D7, o} (20b)

and the denotations uy

E- N



L1 Ll2 13 e 1, ij... i
(077 10 8977 5080 13)-chth(L Supe LUOSU LK LseTay o
(532t 832, 53%3 y=f dtf (L&# K'sE., M sDY)av i
o2 227 237 gttt it Ui
11 12 i, * 1
(177 s 81 12)—det(I3BtL*ouidS,faBuKiot ds) .
U
21 22
LS 6 = 6‘D
(5177, 81°%,) det(faBoL* as, IBBQ K,50 dS)
those by
Llj=tlj— ;L( Q}E +-—%§L), Klj=5. - —{u, +u. .), Kf=u.—uf
2 a:.i aoi. 13 z 1; Jii J 1 7]
R T ’ * (2Ge)
=— =— . =b=-3
K'==(D"+ — 7, Mi==(Eg+b 1), Kgt
1
anc also tnose defined in (6)-(9). The unified variational

principle (20) evidently yields all the fundamental equa-
tions ©of incremental motions of piezoelectric strained media
but the initial conditions and the symmetry of stress tensor,
as its Euler-Lagrange equations, and conversely, if the fun-
cdamental eguations are satisfied, the variational principle
is cdefinitely verified.

The unified variational principle (20) operates on the in-
cremental, mechanical displacements, strains, stresses and
tractions, and the electric potential, guasi-static electric
field, electric displacements and surface charge of piezo-
electric strained medium. The usual continuity and differ-
entiability conditions for the field variables, the initial
ccenditions (15) and (16), the conditions (11) and the sym-
mecry condition of incremental stress tensor are imposed on
the admissible state Ai of (20b). The variational principle
(20) recovers that dedlced from Hamilton's principle in
Cartesian coordinates, and it includes certain earlier va-
riational principles as special cases [33]-[36],[82]-[86].
Moreover, the variational principle (20) should be modified
for the linearized constitutive relations by use of the
electric enthalpy of the form

g L oidkl. 1 i i3k, o
H= C 5..5 - .E. = .S,
H=——C 1571 > C E1E] C El i (21)
which implies the dislocation potentials by
1)_,13_ AL i 1 i ~idke i ‘
L - =t (C el “kijEk)’ L7=D"-(C ojk+C Ej) (22

‘ . . . ik i ik
in.lieu of those defined in (20c). Here, ClJ l, Clj and
C denote, in this order, the elastic and piezoelectric

strain constants and the dielectric permittivity of piezo-
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electric medium, with their usual symmetry properties, namely,

ikl e - - . - -
cid =Ck 1]=lekl’ Cl]kzcjlk’ cll.cdt (23)

On the other hand, the unified variational principle (20)
takes the form

SC N )= Je 0,-13. 0 ,,0 5,17 3
LA} dethéLoéuj+Lo 587 5+K7 50t yave [ def o L RS

aB to*
. 24a
+/ atf. KS.stlds= 0 e
T aBuo*i o
with the admissible state ‘
_ o} o hily| i
A =
o {ui, Sij’ tO P Ty ¥ (24b)
the definitions (10) and those by
ij i3 .ijkl.o o _© 1,0 o
L= C.=57 - ——{u,  .+u. . .
o “to C k1’ Klj %" 72 (u1;3+uj;i+u0;i+uk;3)’
0o 0 O
K =ui=u; (24c)

and it leads to the fundamental equations of piezoelectric medium
at 1ts 1nitial state.

The differential variational principles (20) and (24) are
derived, in a systematic manner, for the spatial and initial
states, respectively, These variational principles are
guite general, and can be specialized to formulate a number
of differential and integral types of variational principles
operating on certain fields (cf.,[ﬁ6]). Among them,
noteworthy are a two-field variational principle in the
form

s pid i, 13 23

yL4\t /D7 = 837 5%ET 530 {25a)
which operates on the stresses and the electric displacements,
and a three-field variational principle as

11 13 21 11 21

. i3, _ . -
CBStui,t :} =48J ll+6J 13+VJ 21+6I ll+61 21 0 (25b)

which operates on the mechanical displacements, the stresses
and the electric potential.
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3 - GEOMETRY OF THIN PIEZOCERAMIC SHELL

In the three-dimensional Euclidean space E, consider a thin
piezoceramic shell which occupies a finite and bounded, reg-
ular region of space B+ B with its boundary surface B.

The region of piezoceramic shell is bounded by the edge (or
lateral) boundary surface S_ and the lower and upper faces,
S and S __. The edge boungary surface S is taken to be a
right cylindrical surface whose generators lie along the
normal to the midsurface A of the shell, ard it intersects
the midsurface A _along a closed, smooth and nonintersecting

(Jordan) curve CB%]- An outward unit vector normal to Se is
denoted by v; and that to Sf(=SlfUS ) by n, . In mathemati-
cal terms, the region of shell is defin=d by
2h/p . <1 (26)
min

where 2h stands for the uniform thickness of shell and Rpip
for the least principal radius of curvature of the midsur-
face A. This fundamental assumption allows to treat the
shell region as a two-dimensional medium. Besides, it is a
sufficient condition in shifting space and surface tensors.

. . . . . i
The region of thin piezoceramic shell is referred to the x -
system of geodesic normal convecteg coordinates, with x7=0
on the reference surface A. The x -axis is chosen positive-
5 [ . .
Ly upward and the x -coordinate curves lie on A. The
metric tensors of shell space are given by

-l.a, =1.8_Av 3o 33
! a

>x(“ )V ¢ g =g3a=0, 95379 =1 (27)

AV ad
=3 a =
g‘tS J,US A’ g (1

with the shifters of the form

o a3 . o -1l.v .a -l.a a 3 .,a .a, v
om A - o3 1. = = - -
uo=8,-X bZ o (u )8 68 v k(u )B 68 X (b8 GBbv) (28)
and the metric tensor of A as
c 2 aB, ¢ a3 33 33
aa5=g15(x ,0), aa =g (x ,0), aa3=a =0, a "=a’"=1 (29)
Here, a 5 denotes the first fundamental form of the refererce
surface, bca its second fundamental form and Cq (=b bos)
its third fundamental form. By %se of the shifters, t%e
components of a vector field, (x ', x.) and (x ,x.)., which

are referred respectively to the basé vectors of shell space
and those of reference surface are associated with one
another as
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3. -3 (30)
X X3—X3‘ X

Also, the relationships of the form

Y -

v, _ 23, a _, la,_ v_3 v
Xa;B— Fa (X\)IB b\)BX )IX :8“(1-1 l’\)(X:B bBX ) xo.;B-UO.X\),3
3

, . +bV% @ -l)a_v
X3;Q X3l(! Xy! X73 H \)Xl3’ X

3 -5
a™v X

= X, 4*Pg (31)

Ta

3_ _ - =
X,37 X3;37 X3,37 X 37 X3,3

are recorded for later use. Here and henceforth, colons are

used to designate covariant derivatives with respect to the

indicated coordinate by use of surface metrics and semicolors
those by use of space metrics.

Further, the elements of volume dVv, of surface d4S, on S, of
area dA con A and of line ds along C are of the forms

Av=/5 dxltdxdx = dSdx>= udAdx>, nadS=pvadsdx3 (32)

with

/2 3

b= [=(g/a) T/ =1-2x 2

Km-(x3) K sg=]g9..]|, a=|aq

3
g 13 (33)

gl
—_ a =
K,=1/2 b Kq b 8]
Here, K _and K_ are the mean and Gaussian curvatures of the
reference surfgce, respectively. A more elaborate account

of preliminaries from the differential geometry of a surface
may be found in [81],[97].

Fig.1l. Geometry of piezoceramic shell




163

4 - MECHANICAL DISPLACEMENTS, ELECTRIC POTENTIALS,
AND MECHANICAL AND ELECTRICAL RESULTANTS

All the field variables of thin piezoceramic shell together
with their derivatives are taken to be exist and to be single
valued and continuous functions of the space coordinates x
and time t, under suitable regularity and smoothness assump-
tions for the region of piezoceramic shell B+3B with no sin-
gularities of any type. Besides, the region of shell is
treated as a two-dimensional medium on account of the funda-
mental assumption (26). In accordance with this, the fields
of mechanical displacements and electric potential which are
chosen as a starting point of derivation are represented,
applying Weierstrass's theorem, by the powgr series exparnsions
in terms of the thickness coordinate x~ as

N

Gi(xj,t)= y (x3)nuin)(xa,t)Evi(xa,t)+x3wi(xa,t) (34a)
y n=0

st =] k)" e e o (x%, ) 4+x v (x, t) (34b)
n=0

Here, N denotes the order of approximation, and it is taken
as N=1, that is, only the zeroth and first order terms are
retained in the derivation; this is the closest to_the clas-
sical theory of thin shells [81]. Also, in (34), u, stands
for the components of incremental mechanical displaéements
referred to the base vectors of the reference surface 2
defined in (30). The components v_ characterize the exten-
sional motions, v, and w_ the flexural motions and W the
thickness motions™ of pie%oceramic strained shell.

The representation (34) evidently implies a distribution of
incremental strain and quasi-static electric field in the
form

2
3. m
{S;40 Ey} = ] (x7) {nSiy7mEi! (35)
m=0
Here, the incremental strain of order (m), _S.. and the

electric field of order (m), _E. are functi®ndJof the aerial
coordinates x% and time t, onTy% The explicit expressions
of electric potential and incremental strain of order (m)
are obtained in the next section.

In consistent with the linear representation (34), the elec-
trical and mechanical field quantities are taken not to vary
widely across the thickness of piezoceramic shell, and hence
they are averaged over the thickness interval H(=(-h,hl).
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stress are defined by

(n®
[o*
those of
ats

with

_ 3,n 3_
un—jg(x ) udx —In—2K I

and
I =
n
those of

(g*

and

a 0y Br,0 @
(ro,so)—{pto Ev 3 bsv

3 3, a 8 3 8 33 3., _
(ro,so)-{utO [v3,d+bavé+x (w3,&hbaw8)]+uto w3}at(x =h,-h)

those of

(NG, M

(5%,P%) = (uu%<3) and (53,P2)=(nco)at(x>=h,-h

and
ll=ql
those of
[NaB
o
(o2,

those of

5, MO°B, KQB]=IH[1, 23, (x3) 2188 yax>
3 3 3 33 33

» R%)=f (1, x7]e% wax”, N7T=f e uax

acceleration by

S S S DT S
UO Ul 4 Ul l—lz

m n+1+KgIn+2

3,n._3 2p-1
s I = -1), 1 =
Jgx7) Tax 2p 2 (h) / (2p-1) 2541
traction by
’ pa)=(uuat38), (q3,p3)=(ut33)at(x3=h,—h)

B8

3 3, a
3+x (w -

3

loads by

3 3
2= yriug (Lex7)udx

B

i i i i

S S S O i i i_ i, i
P, 1l =x"-s_; m =h{g +p ),mO h(ro+so)

(@] ] (@]

initial stress by

,Mgs , Kgs ]:fﬂfl,x3,(x3)2]tgs pdx
3

Rg]=fH[l,x th3udx3

initial traction by

3

—bgw3)]vutg3wa}at(x3=h,—h)

3.3 3 3 3
’ (N*IM*)':fHT* (1,x )de

3

the two-dimensional resultants of incremental

(36)

(37)

(38)

(39)

(40a)

(40b)

(41)

(42)

(43)
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- @ O 33 a

(H ' p ) = ut Lp +vo=8-b5v3+x3(w ;._L W )J+'t0 W

at(x =h,-h)

3 3 _ 3« e .

(G, p_)=nt] [y +b8v6+x T 3,6 0 S)wt (1+~ ) (44)
and those of initial loads by

a 3 3.3 3 3 3

NG, MY ) =[re v (10 wad, o] ,M*o>=IHr (1,%7) pdx s

(Si‘o, P ) =(undth ) and (s),P3 )=(ut) ) at (x7=h,-h)
and

SRS SRS R R i i
Ng =95 = Pyr My = hig +p)) (46)

and also, the two-dimensional gross electric displacements
by
i i 3.1 3
(F*, G7) = g1, x7)D pdx (47)

surface charge resultants by

(c, &) =(qD3) at (x3=h, -h), e={(c+d)h (48)

and edge-surface charge resultants by

(5, G)=fp, (1, x)pax’ (49)
are intrcduced. In the foregoing definitions, the resultants
of stress and the gross electric displacements are measured
per unit length of the coordinate curves on the reference
surface A, the resultants of acceleration, surface load and
surface charge per unit area of A, and those of edge-1load
and edge-surface charge per unit length of the Jordan curve
C of A.
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5- STRAIN AND ELECTRIC FIELD DISTRIBUTIONS,
CONSTITUTIVE RELATIONS

The distributions of incremental strain and electric field
for the piezoceramic shell are expressed in terms of the
displacement and electric potential gradients, respectively.
To obtain the explicit forms of the distributions of order
{m), (35) is inserted into the third term of variational
volume integrals in (20), namely,
13 ij 3 :

§ = . =

3775 dethdAfHKljdt pdx~=0 (50)
and carrying out the integration with respect to the thick-
ness coordinate, one obtains

al
1=Jpatf (S gmeyg) N7 +(1 28 Cag) M +‘2 a5 Vag) 0K 51)
33 _
+( S5 )5Q +(;S,5 )6R +( 8337833 1da=0
This yields the distributions of incremental strain as
¢4
with the definitions
L - -1 2 -
Ca3™2 (Va:5+v3:a ZbaBVB)’ €372 (V3,d+bavéhwa)' €337%3
€ =0 L (-bcv b0 +2 + +w, =2b .w,}, € ”—£ﬂﬂ
2872 "PaVo:878V0:a “CasVI Va8 Vaa “PasW3)  fa3T 2 V3,0
L o e oy = (52b)
3~ 1o W, g™PgW, (F2C g Wa) €337, =0
as its Euler-Lagrange equations. Likewise, sagstltutlng
(35) into the wvariational volume integral 3J 53 of (20} in
the form
23 i 3
3 23-ITdthdAfHMiéo pdx~=0 (53)
and performing the indicated variations, one reads
23 a a 3
A - — - - =
J 23—detjA[(OEu e ) SF +(|E e _)8G +( Ey-e;) 6F"]dA=0 (54)
which has the distributions of electric field by
a a
OEi—ei(x B, lEi—ei(x L) {55a)

with
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eQ=—¢ o e3=—¢, €a=~v’ ’ 53=0 {55b)
In evaluation of (50) and (53), the mechanical and electrical result-
ants (36) and (47) and the relations (31) are considered.

The distributions of strain and electric field (52) and (55)
are now substituted into the constitutive parts of the vari-
ational principle (20), and then the variations with respect
to the thickness coordinate are carried out recalling the
resultants (36) and (47). Thus, the mechanical constitutive
part of (20) is expressed by

12 P NCER 1, 3% 32 ..
89715 det}Atf_N S5 *tig )]be + fM Sty b
€3 °3a 8 Ba
22 1 I R el 1 9% 3
+[K- G +=z—)] 6Y +[Q -5t
2 ayas aySa aB 2 Bea3 de
ag 1 LY M 33 a8 N
+[R —2—(-8—S——+-§€—)]5€a3+(N + ‘ég—) 6e33}dA—O (56a)
a3 3a 33
and the electrical constitutive part of (20) by
2572 = aef, [t 320 + @™+ 224 e Jan=o (56b)
®i a
The Euler-Lagrange equations of (56) and (57) are the consti-
—utive equations of piezoceramic shell in the form
N (T ), M= R T
°Ca3 °Caq a2 °“ga Yag Vga
x 3o o x £ 2 &
o) =_%_(€g»—+.ag__), R :—%——(azk <+§§——), N33:BZ on AXT (57)
a3 3o a3 3a 33
and
.1 3% _ 9L
E =35 G* =- e on AXT (58)
i a
where
A3
J'H'P..;dx {59)

1s the electric enthalpy per unit area of A.

The constitutive eguations of piezoceramic shell (57) and
(58) 1include the effect of nonhomogeneity as well as that of
nonlinearity. If the effects are neglected, that is, the
quadratic version of electric enthalpy (21) is invoked and
accordingly (22) is considered in (20), the linear consti-
tutive equations of piezoceramic shell are obtained as

T te
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aB aB _aB aBk T_ ka8 T
(N, M, K )-(go,gl,gz) (~S:<1) (go,gl.gz) (»-E-k)
o _a a3kl T ka3 T
Q ., R )—(Slo,gl) (?Kl) -(Eo,gl) (Ek) on AXT (60)
33_.33k1 T k33 T
NTTECST S T (B
and
i i, _ ijk T_ ik T
(F7, G )-(90, ql) (§jk) (?o, 9 ) (?k) on AXT (61)

Here, the matrices of mechanical strain and electric field v
are introduced by

(§k1)=(ek1r Ekll Ykl)r (?k):(ek’ Skl

and the elastic stiffenesses by

0) (62)

ijeeak_ ijeek aideenk_ g Aide.uk 3in 03
o =(Cs Co_qr Co ) . Co [iC (x”) udx” (63a)

which can be expressed in the form
13...k:C13...ku
n n

C (63b)

in the case of homogeneous ceramic material.

6 - ELECTROELASTIC EQUATIONS OF INCREMENTAL MOTION, AND
ASSOCIATED BOUNDARY AND INITIAL CONDITIONS

This section is devoted to a consistent derivation of the
two-dimensional electroelastic equations of incremental
motion and the associated boundary and initial conditions
for the piezoceramic shell from the three-dimentional egqua-
tions of piezoelectricity. The point of departure for the
systematic derivation is the linearized representation (34)
and the unified variational principle (20}. The derived
eguations involve the stress and couple resultants introduced
in Section 4. To begin with, the first term of volume inte-
grak55J1}1 in (20) is stated as

-1l a v 3 3 3 3
53 ll-dethdAjH[L by (BV X7 6W )41 (6v +x” 8w4) Judx =0 (64)

where (30) and (34) are used. The integration of this equa-
tion with respect to x~ yields

11 i, iqd ioi i i i 3
537 1= [1dtf (VU1 41587 ) 59 + (W Tem b em = 0B) 6w, ]dA=0 (65)




Hore, the mechanical resultants (36)-(46)

are recalled,

and

also, various relations between space and surface tensors
and their derivatives are considered and the identities of

the form
v Ba vBa, _ v, ~lg A 3a_ ,va3
FR X g { WX ):S T TR A S b _x
a3 _ al v Ba_ -1l a, R 33
W = lux V..t HH P s X plu )Bbax
v 3a = Y 3a)
P 13 HaX '3
and
o .3 L LTl B
¥o3® 2(Km X Kg)— p(u )Bba

(67)

are used. From (65), it follows at once the two-dimensional

equations of incremental motion as

vi o+ vl + 1t 4 1t - oAt = 0 on aAxT
O O
wl o+ T; + mt o+ mé - oBY = 0 on AXT

In these eguations, the field gquantities

vis vE? oY, \/3=\7°‘?O‘+basvo‘8
= 3 3

W= wS?S—QQ, w3=w“?a-N 3+ba5w“~
and

T2=T;3_J+baBT;S-(Rg a+N23)w3—Qg(v3’a+biw8)
where

LT :NrS_biMav’ wa3=Ma8_biKav; va3:Qa, WS <
and

023 =n2V (v -bfv)eM2V W —bul) et

UZB=QZ3W3+N25(v3,s+b;vv)+mgs(w3,5+bng)

T23=MZS(v3,8+bgvv)+KgS(w3,8+b;wv)

(68)

(69a)

(69Db)

R% (69¢)

(69d)
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are 1ntroduced.

In a similar manner, inserting (34) into the fourth term of
volume integrals 5J2}l in {20) one reads

21 _
21

Then integrating with respect to x3 and using the identity
{67) and that of the form

63%5, = pat[paa =Dt | (se +x7sy) uax’=0 (70)

a
HX

_ a 3
- ={px ):a+u'3x (71)

the variational integral (70) becomes
21 o _ a3 _
637 =, atf, [(F, #c-a) 8¢4(G7 -F +e) 8¥]dan=0 (72)

in terms of the resultants (47) and (48). The Euler-Lagran
ge eguations of (72) are given by

FY +c-d=0
: on AXT {73)

a 3,
G ;a-F +e=0

which denote the two-dimensional charge egquations of
electrostatics.

Now, attention i1s turned to the associated boundary condi-
tions which follow easily by evaluating the surface integrals
of (20). The mechanical displacements are taken to be pre -
scribed on only a part S (=CuXH) of the edge boundary surface
Se and the tractions on the remaining part § (=CtXT) of S
and the lower ad upper faces S £ and S .. An aEternating
potential difference is appiled to %ge perfectly conducting
thin electrodes on S_. and the surface charges are specified
on S _(=CXH). Thus, ghe mechanical surface integrals of (20)
are stated in the form

k 3 3

11 j j
3 ll:detﬁ:th[Ti—va<t“1+tg J;k)]éujudsdx

5 .33,,.3k 3 s
+dethf[1* ny(t7 I+t u ;k)]eujydA 0 (74a)
and
Y - - -
<1 thITdtfquH(ui ut)ér “udsdx”=0 (74b)

Evaluating these integrals as in (64), the natural boundary
conditions of mechanical displacements are obtained as
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v, - v*¥ = 0, w. - w* = 0 along C «T (75)
1 i i i u
and those of tractions as
Iy (u®don®d, 2 j_ aj, ]
Ny »a(\ +Uo )=0, M —va(w +To ) along CtXT (76)
and
5 P I B I (wdeedy o
S;-(q +ro)—0 on SquT, Po-(p +so) 0 on SleT (77)

in terms of the resultants (40) and (41).

Similarly, the electrical surface integrals of (20) are
expressed by

2l 5 22 N 3_
81 foTdthf(Q—g)ooudAzo, S1 22=detfdQH(vaD -0)8pudsdx™=0 (78)

After evaluation, this leads to the natural boundary conditions of
electric potential as

¢~-y=0, y-&=0 on AXT (7%a)
* *

and
\,aF*C‘_on, \)aGa—G*FO along CXT (79b)

in terms of the resultants (49).

On the other hand, a set of initial conditions arises in conjuction
with (15), (16) and (34) as

8 g o o
—nk (s - —R* =
vi(x ,to) ui(K ) =0, wi(x ,to) Bi(x ) =0

on A(to) (80)
VoxT e )= (x7) =0, v‘«i(xc‘,to>—5*.l(x°‘)=o
and
z(xc‘,to)—a*(x"):o, vp(xa,to)—s*(xa)=0 on Al(t ) (81)

*

where 1*, 2., Yf,dzfa*andsare the specified functions of the

. a'i
ccordindtes x .
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7 - THEORY OF PIEZOCERAMIC SHELL UNDER A BIAS

Thus far, the electroelastic equations of a piezocecamic
shell are derived for its incremental motions superposed
upon an initial, static finite deformation at its perturbed
state. Now, the two-dimensional equations are complemented
by those of piezoceramic shell at its unperturbed state. At
the unperturbed state, the piezoceramic shell is taken to be
self-2quilibrating, no electric field to be present and the
field of mechanical displacements to be presented by

-0, 3, .0, ¢ 3 0,a.

ui(x )-vi(x ) +x wi(x ) (82)
which is the counterpart of (34a) for the static deformation
of sheil.

In parallel with th~ derivation of the electroelastic ecua-
tions at the perturbed state, the variational principle (24)
is evaluated, and then the two~dimensional equations of
equilibrium are obtained in the form

£a 8a o, BB 8_
(vo +AO ):5—05(Q0+A0)+No-0
(vg3+A;) u+baQ(VgS+Ags)+Ng=O
Za 2 a ; a a on AXT (83)
(WO +BO ) 3—QO DSAO+Ed+MO—O
g
W3BY) b, (W% o3 Edem3 g
o o :a Tad3 ¢ o) o) o ©
with the denotations by
3 3 g 8
vaa :Na»-bs Mao , VOj:QC!’ #B:Ma _b:Kac, WQ3=RQ
o o T o o) 0 o o e} o o) (84)
and
a8, w0 8 S T 8 80, .«
Ao‘No v, bovo)+Mo Wo 1o §?3)+Q wg
a  al o g 0 6,2 o 0.0 , %3
AO—NO (v3’8+b6zr)+M ( 3 €+b8wf)+Qowo
Q
BE % (v ® 5034k (w B i) 4rPW®
e} o) O :0 0O e} 0 00 3 [e )6} (85)
a a8 O g0 a8 o o, a3
BO—M (v3,q+b8v )+Ko lw3’8+b8w7)+ROwo
a__ B ¢ 33 a, E a3 a3
EO- (Rowo-5+No W )—Qo(vo .8 bBVo wao)
EB:-(RO"3 +—N33w3)—Q3(vO +b8v?)
o} (oo} oo} o 3,a a8

————.
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in the notation of (43)-(46). Also, the distributions of
straln are obtained as

{86)

with

w O
<
Q
)
o
<
w
w0
Q O

O
e}
Q
O o
O

vow©] (87)

e =—=— (W +V
/ Z o1

w O
o
R D
93}

cad aZ Z 5kl .0 | T
(NZT, MJ7, KZT)=(C ., C v C,™RT(E )
a3kl o T 3 33kl .o

(88a)
33
b No _(go) Skl

)
with

e) _ a0 o) o)
(201) = (epyr Spqyr Toy) (88b)

the natural boundary conditions of initial tractions as

g nB af 3 a3,  a, _
Nig™ valVg +A] )=0, Ny = v (V] +A ) =0 {89)
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along CtXTo
me v W% )20, w2 -y %) =0 (83)
o o o o * 0 o 0 O
and
B )_pJ . (
8;,790=0 on squTO,p;{ PJ=0 on 5 XT_ (90)
and those of mechanical displacements as
v? - v%*= 0, w© - w®*=0 along C XT (91)
i i i i u” o
In deriving (83)-(81), the resultants of initial state (43)-

(46), the relations (30})-(33) and the identities (66) and (67)
are considered.

In the foregoing analysis, an electroelastic shell theory
for piezoceramics under a mechanical bias is systematically
and consistently established via a variational procedure.
The two-dimensional theory is constituted by the fields of
mechanical displacements and electric potential (34), the
distributions of infinitesimal strain and electric field (35)
and (52)-(55), the macroscopic constitutive equations (57)
and (58), the macroscopic stress equations of incremental
motion (68) and charge equations of electrostatics (73), the
natural boundary conditions (75)~(77) and (79), and the ini-
tial conditions (80) and (81l) at the perturbed state; and
also, by the fields of initial mechanical displacements (82)
the distributions of initial finite strain (86) and (87},
the macroscopic constitutive relations (88), the macroscopic
stress equations of equilibrium (83) and the natural bound-
ary conditions (89)-(91) at the unperturbed state of piezo-
ceramic shell of uniform thickness. The complete set of
two-dimensional electroelastic equations governs the finite
static deformation of piezoceramic shell at the initial
state, and then accommodates all the incremental types of
extensional, thickness and flexural motions as well as their
coupled motions of biased piezoceramic shell at the spatial
state.
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8 - SOME SPECIAL CASES

In the preceding sections, a shell theory is established for
vibrations of piezoceramics under initial stresses in invari-
ant form in the x -system of general convected coordinates.
Thus, the shell theory is quite general and readily reducible
to various special cases of engineering interest. Of special
cases, those concerning with the material properties, kine-
matics and geometry of piezoceramic shell and those of biased
piezoceramic composite shell and unbiased piezoceramic shell
are pointed out. Also, a complete linearization of the re-
sulting equations is given. The uniqueness in solutions of
the linearized eguations is studied by means of the positive
definiteness of eneraqgies.

Thickness polarization - The constitutive relations (60) and
{6l) of biased piezoceramic shell that hold for all the lin-
ear plezoelectric materials are now specialized for the case
of thickness polarization. In such a case, the direction of
polarization coincides with the thickness axis-x~, and the
elastic and piezoelectric straln constants and the dielectric
permittivity are axpressed by 12 independent constants, 1n
lieu of 45 in the general case, as follows

- 11 13 12
o C c

0 0 0 A
.
ClJ C33 Cl3 0 0 0
ch Cl3 Cll 0 0 0
. 5 1
™ -0 o o Hto oo | P o2
0 0 0 0 c55 0
44
!.O 0 0 0 [ol
o o o o o e ctto o
relp] - 31 33 31 0 0 , [Cl]J: 0 C33 0 1192b)
16 22
K 0 o 0 0 0 C
with
P9 a Cijkl, eip = Cikl
(ij) or (kl)=11, 22, 33, 23 or 32, 31 or 13, 12 or 21 (92c)

(p) or (g) =1, 2, 3, 4, 5, 6

which should be replaced by those in (60) and (61).
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Similarly, the case of polarization in other directions

can be taken up in the constitutive relations of piezo-
ceramic shell.

Kinematics - By invoking the Kirchhoff~Love hypothesis of
elastic shells [81], namely,

o

wa-—(v3'a+bavc), w3—0, 53
o__,.0 g_o B, B o__ 1 o o

Yoo (v3,8+b8vo)(6a+vo:a)' w3— 2 v3,av03,

in (34) and (82), one obtains, approximately, the classical
case,

)
Yi3—Yi32 0 (94)
Besides, in consistent with (94), a restriction of the form
v =0
should be included in (34). The inclusion of (93)-(85) leads

to vanishing transverse shear and normal strains in the re-
sulting equations of biased piezoceramic shell.

Geometry - The formulation being in invariant form the re-
sulting equations can be readily expressed in any particular
system of coordinates most suitable for the geometrical
configuration of piezoceramic shell under consideration
(e.g., cylindrical and spherical shells or shallow shells).
Besides, in the absence of curvature effect,

by=0; p:=5§, b=li wp =D, Ko =K =0 (96)
and hence, the governing equations of piezoceramic shell
are reduced to those of piezoceramic plate of arbitrary
shape. With these simplifications, the two-dimensional
eguations of incremental motion in the form

af ag, B ac_ B a 8 8 B 8 _
N :a+(NO V:0+Mo w:o+Qow ):a+l + lo pA" =0
o a af af 3..3 3
o :a+(Qow3+No V3,B+Mo w3,8):a*l +lO pAT =0
M2 %0 4k%%E er%E) . 0P (0%vP | 4N 3WBer%E )
@ O t0 © t0 O ra o :a O 0o :a
+m8+mi—pBS=O
a af af a 33_ a a 33
R :a+(Mo V3,8+Ko w3,8+Row3):a N (QOVB,a+Row3,a+No w3)
+m3+mg—pB3=0 on AXT (97)




177

Ty

wlth
(17,07 =t at (x°=h,-h)
e 33 a3 a 33 @ I gp
(ro o) =t (v .3 X“w :3)+to w at{(x“=h,~-h) (9¢)
3 3 3x 3 33 3., _
(rO so)— 5 (v3’&+x w3’a)+tO W at(x“=h,-h)
the natural boundary conditions of traction as
S S R AR e T LA e
00 :0 Fo
3 3 Ba Ba _
N_ ,(Q +Qow +N 3,a+Mo w3,a)—0
a 40 a 80 a B a on CtXT (99)
M, - 8(M +MO GHEKS W | #R W ) =0
3 a ad al _
M »u(R ow3+MO v3,B+Ko w3,8)_0
and
I (eI P S R
S,-{g +ro)—0 on SquT, P - (p +so) 0 onsleT (100)

with (98), the distribution of strain as

L L -
ST Vara¥Va, )y 8u3™ o (WHvy )y €337W,
(101)
‘—i—(w + ) € ——i—w €.,,=0; =0
ai’ 2 37 Vel Fa3TT2V3, 0 f337YF Yiy
and (34)-(37), (47)-(49), (55), (57)-(63), (73), (75) and
(79)-(81) are recorded at the perturbed state, and (43)-(46)

and (82)-(91) at the unperturbed state for a piezoceramic
clate under initial stresses.

Piezoceramic conmposite shell - The two-dimensional eguations
of biased piezoceramic shell can also accomodate the incre-
mental motions of a piezoceramic composite shell with N
layers for the case when the mechanical displacements and
electric potential fields vary linearly in the form

T R M AT B S AL

¢(m)(xl,t)=¢(m)(xa,t)7 m=1, 2, ...,N

(m)(xa,t)

(102)

(xi,f):w

within the concept of the effective modulus of composites
(e.qg., [98]). The piezoceramic shell consists of two per-
fectly conducting electrodes at its faces and (N-2) layers
between them. Each constituent of piezoceramic shell may
possesss distinct but uniform thickness, curvature and

electromechanical properties. Also, the constituents are
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well attached one another, and hence the relative deforma-
tions are prevented at their interfaces. Thus, (102} yields
the fields as

viMay WMy, oMoy, (103)
due to the continuity of mechanical displacements and elec-
tric potential at the interfaces of adjacent layers. In
view of (103), the resulting equations account for the in-
cremental motions of piezoelectric laminae provided that (2h)
is considered as its overall thickness, and accordingly the
integrations are carried out, and also, the simplifications
implied by (103) are taken into account. A detailed analy-
sis of biased piezoceramic laminae is beyond the scope of
this paper and will be taken up in a forthcoming study [9@.

Unbiased piezoceramic shell - When the terms involving the
incremental motions are omitted, that is, the terms indi-
cated by a zero index together with the electrical terms are
retained only, a dynamic tneory is obtained for the finite
motions of piezoceramic shell without a bias. The two-di-
mensional theory is both geometrically and physically non-
linear in view of the distribution of strain (86) together
with (25} and the constitutive relations (57) and (58).

The governing equations of the fully nonlinear theory are
(34b), (43)-(49), (55), (57) where the resultants should be
replaced by those with a zero index, (58), (59), (73), (79)-
(82), (83) with the acceleration terms as in (68), (84)~-(87)
and (89)~(91). 1In virtue of the field of mechanical dis -
placemerts (82), this shear deformable theory accounts for
the motions of piezoceramic shell subjected to large dis -
placerment gradients and large angles of rotation. The finite
theory contains some of earlier theories which were always
geometrically linear, as special cases. Another important
special case is found by taking a partially nonlinear version
cf the strain-mechanical displacement relations (25) in the
form

o __1 , o0 o o 0 o __L (° °
Sa3 7 Mg et g4, 0 Y3,8) 7 54373 ‘ua:3+u37“)2104>
SO -uo
33773;:3

in conjunction with (82). The use of (104) in derivation
yields the governing electroelastic equations appropriate

to a refined theory of piezoceramic shell of a von-Karmén
type [81]. Moreover, a complete linearization by discarding
the terms of initial state and using the linear constitutive
relations (61) and (88) leads to a fully linear theory of
plezoceramic shell. In this case, the stress equations of
motion are given by
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a3 B0 R g 8
(7= M) +bTQ%+17-0A" =0

B-QBB=O

(" -p K*?) | -0%+m
i on AXT (105)

145

(o3 QA

Q :a+ba5(N -b

R* N 34p  (M*P-pPk®%) emi-oB3 =0
HEe ) alk g

M%) #1283 =0

-

T aQ W

and the associated boundary conditions by

]
Ni—vB(Nas—szBG)=o, N;-ana:o
o aB . a 80 3 a along C_XT (106)
My=vo (M7 "=b K ")=0, Mi-v R =0
and
Sj—quO on § _XT Pj—pj=0 on S, _XT (107)
* uf "’ * 1f

In addition to (105)-(107), the charge equations of electro-
statics (73), the electrical boundary conditions (79), the
linear constitutive relations (60) and (61), the fields of
mechanical displacements and electric potential (34), the
distributions of strain and electric field (52) and (55) and
the initial conditions (80) and (8l) constitute the governing
equations of the linear theory. The results of the afore-
mentioned special cases, with various applications will be
reported in detail in a separate memoir.

The governing eguations of the linear theory of piezoceramic
shell have a unigque solution under the mixed-boundary and
initial conditions (79)-(81), (106) and (107). To establish
the unicueness of soclutions, the existence of two possible
sets of solutions identified by prime and double prime, and
their differences by u, (=u!-u')and alike isconsidered. In terms of the
difference variables, the intérnal energy of piezoceramic
shell 1is expressed by

> =f8—%+tljsij+DlEi)dV (108)
By taking time differentiation, considering (22) and inserting

(3) and (4) into this e<uation, the rate of the internal
energy 1s given by

2 13. _ i’; 3

‘g, _fAdAjH(t 45,5 D e,i)udx (109)
Substituting (24) into (109), then carrying out the integra-
tion with respect to %~ and applying (31), the rate of the

internal energy is obtained as
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5 - g . af . _ af. B . a3 a3 .
G o=f ([P A I N L e R T e N
Q 8' Qo 33‘ _ o [o 20 3-
b0V +Q™ +N wé] (F ¢ FCU #F y) }dA (110)

in terms of the denotations (36), (47) and (69). Analogously,
the rate of the kinetic energy of piezoceramic shell defined
by

3

D= LA —2pttd, nax (111)

is found in terms of the acceleration resultants (37) as
i‘ iv
r = . .
IAp(A Vi tBTW, ) AR (112)

where (30) and (34) are used. Besides, in view of (73) and
(105), the equation as follows

[ qat [ L oW 6%, #omald - 6%, -F re)i]anso (113)

is formed. This can be transformed, by applying the diver-
gence theorem, considering (110) and (112), integrating over
time and assembling all terms, to
t
. 1 a
JA(E+Q)|tOdA=ITdt( §ov I¥ds+ [, ran) (114a)
with the definitions by

1

(v“loi+wal®ir{Faé+Ga¢)
(114b)

r (11¢i+mlwi)-[(c-d)é+e¢]
The kinetic and potential energy densities are positive-der-
inite by definition, and initially zero; so that the kinetic
and potential energies of piezoceramic shell and also X and
N1, calculated in terms of the difference variables possess
the same properties. Thus, ifr*and[*are zero in (114), one reads

z (t1)=9(t1)=2(to)=9(to)=0 (115)

which implies a trivial solution for the difference set of
solutions, that is, the two solutions are egqual. The
boundary and initial conditions (79)-(81), (106) and (107)
as well as to specify one member of each product in (114Db)
make the right-hand side of (l114a) zero, and hence, they
are evidently sufficient to ensure the uniqueness of solu-
tions.
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9 - CONCLUSIONS

The main result of this paper is a shell theory in invariant
form for small motions superposed upon a static, finite
deformation of piezoceramics subjected to mechanical biasing
stresses. The set of two-dimensional, approximate, electro-
elastic governing equations of the shell theory is established
by means of the unified variational principles (20) and (24)
together with the fields of mechanical displacements and
electric potential (34) and (82). The governing equations
in a complete Lagrangian description are given for the
unperturbed static state and the perturbed dynamic state of
piezoceramic shell coated with very thin, perfectly conducting
electrodes. The shell theory accounts for all the incre-
mental types of extensional, thickness and flexural as well
as their coupled motions of, and also, for the initial,
finite, static deformation of, piezoceramic shell of uniform
thickness. The fields (34) and (82) which are chosen as a
basis of systematic and consistent derivation of the shell
theory take into account all the significant mechanical and
electrical effects, and they are able to predict the influence
of biasiig stresses on the dynamic response of piezoceramic
shell. The two-dimensional, variational versions of the gov-
erning eguations (51), (54), (56), (65), (72), (74) and
(78) provide an appropriate basis for numerical direct solu-
tions, for instance, based on the Rayleigh-Ritz procedure

or the finite element method [100]. The unified variational
principles are deduced from the principle of virtual work by
augmenting 1t through the dislocation potentials and Lagrange
undetermined multipliers. As their Euler-Lagrange equations,
the variational principles yield all the fundamental
equations of the initial state and those of the spatial state
cut 1ts initial conditions, of piezoceramic strained shell.
The variational principles do agree with those extracted
from Hamilton's principle in Cartesian coondinates 36} and
contain certain known results (e.g., [28], [32]—[35{ 82]
(88], and those cited in [101]), as special cases.

’

The shell theory ilncorporating the geometrical and physical
nonlinearities is gquite general, and hence, it leads to a
variety of intermediate theories by considering special
motions, geometry and material of piezoceramic shell. The
resulting equations of shell theory may be expressed in any
particular system of coordinates most suitable for the
geometrical configuration of piezoceramic shells and plates
at hand. A fully nonlinear theory of piezoceramic shell is
stated in the previous section; this includes the results
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reported in [60], [63], [65] and [82] for the case when the
effect of geometrical nonlinearity is omitted and also the
curvature effect is absent. The electroelastic governing
equations of piezoceramic shell are shown to be applicable
for the incremental motions of a piezoceramic laminae, and
they are explicitly stated for a biased piezoceramic plate
of arbitrary shape and an unbiased piezoceramic shell. 1In
particular, the fully linear theory of piezoceramic shell
which does agree with the known results is described, and
then, the uniqueness is examined in solutions of its gov-
erning equations. The sufficient boundary and initial
conditions are enumerated for the uniqueness by use of the
classical energy arguments (cf., [102] for elastic shells
and [89] for thermopiezoelectric plates). Similar results
for the uniqueness may be obtained by means of the logarith-
mic convexity arguments ([103], and, for instance, [14] for
elastic shells).

Final remarks are in order concerning extensions and appli-
cations of the shell theory presented. The shell theory
may provide an appropriate basis for approaching to the
stability of piezoceramic shell. Another thecry may be
established for piezoceramic viscoelastic shells by repla-
cing the elastic stiffenesses of piezoceramic shell by
their corresponding convolution integrals. Also, the shell
theory may be extended so as to incorporate the mechanical
effect of electrical coatings as in [60],[82], the effect of
couple stresses (e.g., [104]) and the thermal effect (e.g.,
[105]), and especially, it may be developed for piezo-
ceramics under a biasing electric and thermal field, as
investigated in [29] and [106] for elastic plates, and even
under a magnetic field [107]. 1In closing, some of the above
mentioned points of importance is addressed in [101].
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CHAPTER 6
DYNAMICS OF PIEZOELECTRIC LAMINAE UNDER A BIAS

This paper is addressed to the macromechanical analysis of
dynamics of a piezoelectric laminae under a mechanical bias
within the effective stiffness concept of laminated composites.
The piezoelectric laminae consists of arbitrary numbers of
perfectly bonded layers, each with a distinct but uniform
thickness, curvature and eletromechanical properties, and it

is coated with very thin electrodes on both its faces. First,
the fundamental equations of piezoelectric strained medium are
expressed by the Euler-Lagrange equations of a unified
variational principle. Secondly, a set of two-dimensional,
approximate equations of the piezoelectric laminae 1is
consistently established. Thirdly, a direct method of
solution is indicated for the macromechanical analysis
certain special cases are considered. The governing
egquations are derived in invariant Lagrangian form and
accommodate all the types of motions of the biased
piezoelectric laminae. All the significant effects, both
mechanical and electrical, are taken into account.

W
3
[oN

1- INTROSUCTION

Laminae or multilayer type of structural elements was
appreciated only relatively recently due to their significant
improvements in piezoelectric properties for ultrasonic
technology. The features and applications of piezoelectric
lavered and/or composite elements and the basic ideas under-
lying their sum and product proverties are available[1-4].

To predict dvnamic response of this type of structural

elements, there basically exist two tvpes of macromechanical
models: the effective modulus model and the effective stiffeness
model. The former model [5,6] replaces a laminae by a
representative homogeneous medium with the aid of averaged
material constants of laminae constituents. This model, although
it is relatively simple, omits the mutual coupling of lavers,
and it is generally suitable for a rather broad class of static
response of laminae. The effective stiffeness model combines
both the physical and geometrical properties of laminae
constituents and incorporates all their essential electro-

mechanical features, and it accounts for dynamic response
of laminae as well.
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Within the frame of this model [7], this paper describes a
macromechanical analysis of piezoelectric laminae under a
state of mechanical bias.

Extension of classical models (for instance, Lagrange's or
Kdrman's model of plates and Love-Kirchhoff's model of
(shells) to piezoelectric laminae leads always to an
effective modulus model, and hence it disregards the
electromechanical interactions between adjacent layers. On
the basis of classical models, the macroscopic relations of
electroelasticity weere derived for multilayer piezoelectric
plates and shells; their steady-state vibrations were
reported in some specilal cases [8—10] as well. Parton and
Senik [8] derived the macroscopic equations of multilayer
piezoceramic shells with thickness polarization of the
layers. Likewise, Karnaukhov and Kirichok [10-12] constructed
the governing equations of laminated piezoelectric plates and
shells by taking into account the geometrical nonlinearity
and, in particular, the effect of viscosity and temperature.
Evseichik, Rudnitskii and Shul'ga [13] derived the
electroelastic equations for the vibrations of a shell that
is innomcgeneous in thickness and has piezoelectric layers.
Moreover, the thermomechanical behavior of multilayered
piezoceranic shells with thickness polarization was treated
under harmonic excitation by Motovilovets and Gololobov [14].
Mention should also be made of a theory of vibrations of
coated, thermopiezcelectric laminae in which +he effects of
elastic stiffness of, and the interactions between, layer

of the laminae and its electrodes were all included [7].

On the other hand, Holland and EerNisse [15] described the
design and analysis of laminae types of piezoelectric bars,
disks and plates by means of Green's function technique.
Auld and his coworkers [16,17] developed a Floguet theory

of wave propagation in periocdic composites that was shown

to agree wel with experiment. Buddayci and Bogy L18.l9]
derived a theory for high frequency motions of pilezoelectric
layers, including some applications, as did Lee and Moon

[20] for low frequency motions of piezoelectric laminated
plates. Moreover, a general transfer matrix description of
arbitrarily layered piezoelectric structures was obtained

[21].

Biasing stress or strain and/or electric field is a new
desicn feature and demand in piezoelectric devices for
ultrasonic application in control engineering. The presence
of a biasing state induced by external perturbations like
thermal, mechanical and electrical fields and even magnetic
fields can significantly affect the dynamic response of
structural elements (e2.g., rods [22], plates [23,24] and
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shells [25,26] and the characteristics of BAW and SAW

(e.g., [27-31] and references therein). 1In a biased solid
medium, the linear thecry of electroelasticity is in need of
modification so as to govern its motions. This fact was
widely recognized, and +taken up by many investigators in
electroelasticity. Tiersten [32] derived a properly
invariant set of the nonlinear fundamental equations,
including thermal effects by means of a systematic use of

the axioms of continuum phsics. From these general
equations, he and Baumhauer [33] established the differential
electroelastic equations for small dynamic fields superposed '
on a static biasing state of solid medium, and also, for
intrinsically nonlinear fields. Moreover, the fundamental
equations of a biase« piezoelectric medium were expressed

as the Euler-Lagrange equations of some variational
principles [34,35].

The aim of the present paper is (i) to present a variational
formulation of the fundamental equations of piezoelectric
medium under a mechanical bias, and using this together with
a linear representation for the field variables, (ii} to
derive the two-dimensional, approximate governing eguations
for all the types of incremental motions of piezoelectric
laminae under a bias, and then (iii) to describe a direct
method of solution for the incremental motions, to indicate
some special cases and also to consider the fully linearized
equations of piezoelectric laminae.

Specifically, a definition of the notation to be used herein
is given in the rest of this section and the content of the
paper is as follows. 1In the first part c¢f the paper, a
unified variational principle is formulated by extending the
principle of virtual work through Friedrich's transformation
in Section 2. In the second part of the paper, presented in
Sections 3-6, by use of Mindlin's method of reduction, the
set of two-dimensional, approximate equations is consistently
derived for the incremental motions of piezoelectric laminae
under a static, finite, mechanical bias. The geometry of
piezcocelectric laminae region is described in Section 3. In
Section 4, a linear representation in the thickness coordinate
of piezoelectric laminae is introduced for the fields of
incremental mechanical displacements and electric potential
which are chosen as a starting point of derivation. Also,
in accordance with the linear representation, various
resultant quantities averaged over the thickness of laminae
are defined. The distributions of incremental strain and
guasi-static electric field are given and the macroscopic
constitutive equations of piezoelectric laminae are obtained
in Section 5. The two-dimensional, approximate governing
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equations and the associated boundary and initial conditions
for the motions of piezoelectric laminas are deduced from

the three-dimensional equations of piezoelectricity by use

of the unified variational principle together with the series
representation of field variables in Section 6. Alternatively,
a direct method of solution is indicated in investigating the
incremental motions of piezoelectric strained laminae in
Section 7. Special motions, geometry and material are
treated and the fully linearized governing equations,
including the uniqueness of their solutions, are pointed out
in Section 8. The last section is devoted tc the concluding
remarks.

Notation-=- In the paper, standard tensor notation is
freely used in a Euclidean 3-space E. Accordingly,
Einstein's summation convention is implied over all repeated
Latin (1,2,3) and Greek indices (1,2) that stand for space
and surfaca tensors, respectively, unless they are put within
parantheses. 1In the space E, a fixed, right-handed system

0f geodesic normal convected coordinates is identified by

the xl—system. All the field gquantities are used in
Lagrangian formulation, and a quantity in the initial state

1s designated by a zero index and a prescribed quantity by

an asterisk. A superposed dot stands for time differen-
tiation, a comma for partial differentiation with regard to
the 1ndicated space coordinate, and a semicolon and a colon
for covariant differentiation with respect to the indicated
coordinate, using the space and surface metrics, respectively.
The index (m) which takes the values 1,2,....,N refers to the
m-th constituent from the lower face of piezoelectric laminae,
, for instance, m=1 (or a prime') to the lower face

ctrode, m=2,3,...,N-1 to the layers and m=N (or a double

")} to the upper face electrode of laminae. Moreover,
represents a regular, finite and bounded region B of

the space E at time t, B(=BU3B) the closure of B, with its
boundary surface 5B, BXT the domain of definition for the
functions of the space coordinates and time, T=[to,tl) the

i

Mo R I
= 3

s
B D (u

w

-

-3
®

time interval, and Z=[2—h,z+h] the thickness interval of a

constituent.
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2- PRINCIPLE OF VIRTUAL WORK FOR THE PIEZOELECTRIC
MEDIUM UNDER A BIAS

To derive, in a systematic and consistent manner, lower order
field equations and to directly provide their approximate
solutions, variational principles were primarily developed

by Mindlin, Tiersten and EerNisse for a piezoelectric

medium, by Mindlin, Nowacki and the author for a thermopiszo-
electric medium, and by the author for a piezoelectric
medium, with small piezoelectric coupling and/or an internal
surface of discontinuity and that under a mechanical bias.
Hamilton's principle, the principle of virtual work and an
experienced guess work were used in deducing the variational
principles of piezoelectricity; a review of the subject was
given in Refs [2, 35]. In order to render this paper to be
self-contained, a unified variaticnal principle is reformu-
lated by extending the principle of virtual work throuch

the dislocation potentials and Lagrange undetermined
multipliers.

. i
In the space E, referring to the x -system of general
convected coordinates, a regqular, finite and bounded recion
of piezoelectric elastic medium, BO, with its boundary

surface SBO, under a state of mechanical static stresses is

considered at its initial unperturbed or reference state z2t
time t=to. This initial state which 1s taken to be self-
eguillibrating acquires its spatial {(perturbed or final)
state B+9B by a small motion soperposed onto the finite,
static deformation of piezoelectric region BO+SBO at the

time interval T=[to,t1). Now employing Lagrangian approach,

the principle of virtual work is stated for the piezoelec-
tric strained region at its spatial state as an assertation
in the form.
. 13- i i
- IS .- 5E. 7 U.
(T i3 DTSE,)AV + 1/28r,0UT0 AV 0

A
+ L5 (T 8U +0, 04)dS = 0

i 17 i3 13 17 C
Here, T ](:toj+t ]), to] and t J are the total, initial and
. o o )
incremental stress tensors;S..=(s..+s..), s.. and s.. the
1] 13 13 1] 13
total, initial and incremental strain tensors; p the mass
density of undeformed piczooelectric medium; Ui(:u, + ui),

4y and Ui the *total initial and incremental displacement
I . . N i
vectors, a (:ui) the Lagrangian acceleration vector; T
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i i i S .
(=to + tl), tQ and tl the total, initial and incremental

stress vectors; o' the electric displacemenrt vector, EY the
guasi-static electric field vector, 0(:niDl) the surface
charge, + the electric potential and ny the unit outward

vector normal to a surface element. Substituting the gradi-
ent equations of the form.

5i5 i3 ;1% 5 in BXT (2)

E.. = 1/2 (U, .+ U. . . P oL
i7 iz sl b ,1

into (2.1), applying the Green-Gauss transformation of
integrals for the regular region B+3B, carrying out the indi-
cated variaticns, and then integrating over T, one finally
obtains a two-field variational principle for the piezoelec-
tric ktiased medium as

sLiu,, 2y s At (LiSu. + Loyav

R R “T"T°B 1

- . i . s -
v oLpdt R (LhSug ¢ LLsr) dS = 0 (3)

with the divergence equations of incremental motion by

ik j _.3 . =
+ tO u ;k);i pa- =0 in BXT (4)

7 -

L =D . = 0 1n BXT (%)

=
]
4
(-
!
3
t
-
(G
+
t
c
—

= 0 on 3BYT (6)

L, = ¢, - niD = 0 on 3BRXT (7)

as its Euler- Lagrange equations. In deriving (3) the famil-
iar relations between the stress tensors and the stress
vactors, the stress equations of eguilibrium and the asso-
ciated boundary conditions, namely,

3o ik . j - ;
L= [e7 Gp o+ ug ;k)]_l = 0 in  BXT
(8)
s D ik <3 J _ .
Lo ™ to* nitO (’u + Uo :k) = 0 on 3 BXT




198

are considered the usual argumentsare implied on the incre-

ments of field variables [36] and the axiom of conservation of

mass is employed. Also, the constraint conditions of the
form

5ui =8¢ = 0 in B(to) & B(tl) (9)

are imposed.

To describe fully the motions of piezoelectric strained
madium, the two-field variational principle (3) should be
supplemented by the gradient equations (2), thes constituzive

egquations in the form

.. q .
R S - L E S - & (10)
3 5. . S, 3E .
i3 ji i
where ﬂ(sij,Ei, téj }) stands for an electric enthalpy

- -
13/]

function which contains the initial stresses as parameters
in addition to (6), the boundary conditions as

*
u; -ou, o= 0 on dBuXT, ¢-¢. =0 on BBQXT (11)

the initial conditions of the form

ul(xj,t ) - v.(x3) = 0, ﬁi(xj,t ) -~ w.(x?) =0
¢(Xl,to) _ Q(Xl) -0 in B(to) (12)

and the constraint conditions (9). These constraint
conditions prevent a free choice of trial functions, and
hence, variational principles with as few constraints as
prossible become desirable in computation. Thus, all the
constraint conditions but the initial conditions are relaxed
through Friedrichs's transformation [34] and the initial
conditions following Tiersten's [38] approach. The result
is a unified variational principle by

i a’ 1
SL{A Y= 83%, 5 . =0 12a
LiAy= 830y + SO0+ 81 ( )

with the admissible state

Ao=ioua,, e, tte, EL, DY, o) (13b)

S. .
i iy’

and the denotations by
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e d .
= 5(:\<It )\‘1« (l
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2 .o 5. .
ij iy
s..- 172 (2, ouL L) (17
13 177 J1:71 -
- . i 1 R
(Z, r ), IT= = (DT+ ——)
z s L E .
i
- i 5
LT UL, Je¥7, — n.D (17
,-.i j
o) = w(x]
-1 ] i,
AT s v ) ] (13
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The variational

linearized constitutivs
the dislocation potentials by




200

i3 S & I Pijkl _ AK1F L
L t (C S C Ek)
1t - pt v (cPIKg 4 cilp (12)
] k ] . . . .
in lieu of those defined in (16). In (19), Cl]kl, Cljk and

ij . . . .
c*) are the elastic and plezoelectric strain constants and
the dielectric permittivity of piezoelectric medium, with
their 2sual symmetry properties [35].

Evidently, the unified eight-field variational principle (13)
yields, as its Euler~Lagrange equations, a&ll the fundamental
differential eguations of motion of piezoelectric strained
madia but the symmetry of stress tensor; and conversely, if
the fundamental differential equations are satisfied, the
unified variational principle is definitely verified.

The unified variational principle (13) recovers thoseigé,}Q
cdeduced from Hamilton's principle and the principle of

rirtual work, and it includes several earlier variationzl
arin:1plea as special cases; the generaticn of the initizl
conditions is the novelty of this unified principle

2~ GESMETRY OF LAMINAE

the space E, consider a piezoelectric laminae compcsed

of two perfectly conducting lower and faces electrodes and

2 iezoelectric lavers between them. Each constituent

ess distinct but uniform thickness 2hm, curvature
ectromechanical properties. The recular region of
aminae, V+3, with its boundary surface § is referred to

the x -svstem of geodesic normal convected coordinates, the

midsurface A of first layer x3=0 being taken as the
reference surface, such that the corresponding metric ten-
sors of the undeformed laminae are given by
boa a3 -1.3, -1 a_Xo
= ) = 2;
S g (u )c(” )Xa (20)
9,3 7% 933 =1
with the shifters of the form
. 3,0 a, =1, 0 a
L;:E‘: - % bfi ’ UO(U )ﬁ = 55 (21)




denote tne flrst anl

14 1
~ a
f the roference surface A, and cag(:bagba)

second fundamental

its third

1 form. By use of the shifters, the components of

1 vaCTh d, (Xl, Xi) and (?l,ii), which are r=spectively
referrad to the base vectors of laminae space and those of
reference surface are associated with one another as
B 3 a -1, agd = -1.8

X = X = . =

N Wy Xy v X {u )BX ; X, (n )aX5

. o _ B (22)

X =uixt Xy = w3 - Xy= %3
Besides, the eguations of the form

x> = - b, x> = 2n - hy, £(x,x%)= 0 (23)

of laminae.

surface between the m=-th and
S by A ’

é

by v. and that to Sf by n .
. i

vstem 0f local coordinates X

situazt=ed on the midsurface Amof the m-th constitu

= - H = eessN
X 2m ;s m=1,2, '

e 1

1

In addition to the x™ -

is introduced which is

ent

Siivy

(24)

where zn is the distance between the surfaces Am ané A.

Also, the eguations as
3 3
X~ = x'- z_ =20
m o m

3 3 =
L me1 = O
3 3 _
X - (Zm + hm) = 0, X - (Zm+l hm+l) =0
with

(25)

(26)

the lower and upper faces, Slf and Suf’ and the edge
The reference surface A

the edce boundary surface along a Jordan curve C.
(m+1)~-th consituent
and the outward unit vector normal to

Tnhus,

C Rt



m
o (2

2. =
r=1

the bonding su

In the region

Zh/Rm. <<1

in

where R _. is
min
midsurface A,

on S8, of area

8 - 6
ir

rface A .
m,m+1

of piezoelectric laminae,

the least principal radius of

volume 2V,

ds along C

and the elements of
dA on A and of line

av =Jgdxldx2dx3 = dex3 =udAdx3

as dsdx>
o

EIRVRY

3 3,2

= (g/a)l/2 = 1 =2cxX” + (x7)

L)
D

o3
b
8
b and ¢ dencte the Gaussian and mean curvature of 2,
ively; a more elaborate account of the results
d can be found (e.g., [35]).

a = laaal' b = |b%], ¢ = 1/2 bZ' g =Igij'

pect
rie

4=~ MECHAWICAL DISPLACEMENTS, ELECTRIC POTENTIZL AND
RESULTANTS FOR THE PIEZOELECTRIC STRAINED LAMINAE

In mathematical terms, the regular, finite and bounded

region of piezoelectric laminae is defined by the fundamental
assumption (28) which allows one to treat the laminaze region
as a two-dimensional medium. 1In addition to (29), all the
field variables together with their derivatives are assumzd
to exist, to be single-valued and continuous functions of

(x*, t) in the closure of laminae region with no singulari-
ties of any kind, and not to vary widely acrcss the thickness
of layers. Accordingly, the fields of incremental mechanical
displacements and electric potential which are chosen as a
starting point of derivation are expressed by

=m m

u. = V.
1 1

x3wm ; m=1,2,...,N 131)
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and
T P ne2,3 N-1
: ; =2,3,¢04,0 (32}
where (vi, wi, @,t)m are unknown a priori, independent and
functions of x% and t, only. In (31) y? , v? and wﬁ, and
o

m . . .
w3 represent, in this order, the extensional, flexural and

thickness motions of the m-th constituent. Also, the use of
(31) was shown to account for the coupled motions of laminae,

as indicated already by Drumheller and Kalnins [39] and the

Zuthor Eﬂ- Moreover, in (32), m=1 and m=N are excluded, since
the electrodes are perfectly conducting. When an alternative
potential difference is applied to the electrodes, one reads

I LS b cosut (33)

“

where is a constant and w the circular frequency.

In the piezoelectric laminae, the constituents are adhered
one another and no relative deformation are permitted at
their interfaces. Thus, the continuity of mechanical
displacements and electric potential on, and that of trac-

tiore ard surface charge across, the bonding interfaces Am e+l
’

are maintained. First, using (31), the continuity of incre-
mental mechanical displacements is written as

m m _  m+l _ m+1
vi + (zm + hm) Wi = v.l + (zm+l m+l)wi
no sum over m; m=1,2,..., N;on Am,m+1XT (34)

This represents 3(N-1) constraints and reduces the number of
the independent functions of displacements, 6N, in (31) to
3(N+1). The independent functions are chosen as

Vi, Wi i m=l,2, ..., N (35)

and the res* of the displacement functions is expressed by

m
v o= v¥ Dz wh s m= 2,3,...,N (3€)
1 i Ly rmi
with
Z = (2 -8 -§ ) h -4 z (37)

rm ir mr (r) mr = (m)
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in terms of them.

Next, the continuity of electric potential is similarly
expressed by

m+ 1 m+1

m Jm _ .
$ tlz + bV =4 + (Zm+1 hoeph ¥ (38)
no sum over m; m=2,3,..., N-1,
on Am,m+1XT {39)
and .
. 2 2
Pt o= ¢+ (z, - h2,¢ on AI'ZXT
W d N-~1 [ -1 (40)
=0 ¢ (2l o+ h VT on Ay, XT

In view of the constraints (39), the (N-3) independent func-
tions of electric potential are chosen as

™ o m=2,3,...,N-2 (41)

The dependent functions of electric potential are expressed
by

0% =1 - (2, = b))y’

M os +§=ermwr 5om= 2,3...,N=2

R YL NS U (1+zN_l/hN_l€:j¢rwr

Nl @) e —gzzhrwr) (42)

in terms of the independent functions (41).

Evidently, the linear representation (41) and (32) and the
gradient equations (2) imply a distribution of mechanical
strain for each constituent as

R
_ 3. r o
=L Ersij(x ()] (43)
and that of electric field for each layer as
R 3. r a
By L (%) (e, x*/0)] (44)

S. .
13

of which the explicit expressions are obtained in the next
section.
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Mow, in accordance with the linear representation abova,
various field quantities are averaged over the thickness
interval of each constituent for the subsequent develop-
ment. Thus, the two-dimensional incremental resultants

of stress are defined by

[NOLS ) M'lil KOLS] =fz[l, X3,(X3)?Jt epdx3

(45)
~ 2
[, R w221 = s L xhe®s £7] wan?
and those o0f 1initial stress by '
ol a 33 aB 33 3
NG s eeer RS uo] =fz[to poeeest 7 ]udx (46)
those of acceleration by
1 _ i i _ i .1
A U VT o4y , BT = MV o W (47)
wit
v S In - 2cIn+l + bIn+2 (48)
where
1= )R = [(zem ™ - zem) " (e
n=0,1,..., (49)
those of traction by
e o a, 33 3 3
(a*, %) = %%, (2, pd) =t
at (x3 = z+h, z-h) (50)
and
% 1 ~ B 3,0 _ L4
(rl, s ) = {ut v LaTPgVy t XD (W - brwl)]
+ ut33 w®  at (x°=z+h, z-h) (51)
3 3 34 3 3
(rl,s2) = (v, +bqv + X7 (w ,;ba 8)]
vt33 w, ! at (x3=z+h, z-h)
o 3
those of loads by
o o . B a 3 3
(LI*, M*) :"Z T*Ug(l' X7 )pdx (52)
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(Nf, Mf) = fzrf(l, x3)udx3

and
Qa
(Syr Pi) = (uugri) and (Sf, Pf) = (urf)
at (x3= z+h, z-h) (53)

and

i _ 1 _ i i1 _ i

17 = g P, 1O = ry S5 (54)

A i _ _ i, 1 i _ i .

m~ = (z+h)qg (z-h)p~; m_ = (z+h)rO (z h)so

Resides, the two-dimensional resultants of elactrical
displacements in the form

(FY, G = 1,1, x>) ptuax3 (55)
those of surface charge by

(&, £) =(uD>) at (x°=z+h, z-h) (56)
and

D = (z + h)d, F = (z - h)e (57)
and those of edge-surface charge by

(F, G) = [, (1, % )oudx> (58)
are introduced. In (45) - (58), the resultants of stress,

initial stress and electric displacements are measured p=r
unit length of the coordinate curves on A, those of
acceleration, surface load and surface charge per unit area
of A, and those of edge-~load and edge-surface charge per
unit length of C. Moreover, in terms of the foregoing
definitions, the continuity of tractions and that of surface
charge by

i i,m+1 m m+1

i i
(g™ + ro) - (p +so) =0 ; 4 - £ =0

on A T (59)

m,m+lX

are given; the resultants can be similarly referred to the
A of each constituent in place of A, [35].




207

5- DISTRIBUTIONS OF STRAIN AMND ELECTRIZ FIELD
MACROSCORPIC CONSTITUTIVE EQUATIONS

The components of incremental strain of order (r) are obtain-

ed by use of the appropriate term of the unified principle

(13), namely,

s/ 32 raer ©oig L - 1/2(u
13 7 "9t A po1 Tz 5 i3
. (60)
fou, . )ettIr Wuanax® < o
jii

By inserting (31) into this eguation, and then performing

the integrals over the entire thickness of piezoelectric
laminae, recalling the resultants of stress (45), one finally
obtains the distribution of incremental strain in a varia-

tional form as

SEP dethgzl[(oﬁxs PR
P gagsn‘i * s - YQQSKQS
(05,3 me,3) 807 (g8 5g ) SR
(535 e33\5u331(r’dA =0 (61)

+11s equation leads, as its Euler-Lagrange equations, to

S.. = e,., LLo= .. =y
071j 137 1515 T fi4r %35 T Yy (62a)
where
eaf - 1/2(V1 8+v8:1_ 2b38v3)'
e!™ e v 1728 1 (w e w . —2p oy (T
23 a3 r=1 Im a:2 8ty a8 3
) - 8] 1
eq3 = l/2(v3']+buvo+ wa) 7 m=2,3,..., X
{m) {m) m
e = e'_+ 1/2 - . g (r)
.3 2 Dﬂ‘ +r212rm(N3'a+ bawg) ] (62Db)
(m) (m
933 = w3 ) ; m=1,2,..., N
[ - o e
: Eas_ 1/2 (- b,lvozs—b__\vg:UanBv3 + wa_S
+ W - '
8:a 2Cu8w3)
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{m) o o .
wa © l/2[(-bavo:8— baVv o, of 2C4gv5)
{m)
+(wa:8 * wS:ct—zcqu3)
m o o (r)
+ oz —bw ., = bW _,+ 2C ,W,)
r=1 rm a 32 8370:8 a3 ] (62¢)
(m) _ Lo tm)y o _
€3 = 1/2 w3,a, €33 =0 ; m=1,2,...,N
(m)
_ 4.0 _ .0 (m)
Yaa =172 bawo:S bﬁwo:a+ 2ca€w3)
(m) {m)

3 = Y33 = 0 ; m=1,2,...,N

In deriving (62), the covariant derivatives of the dislace-
ment vector are expressed with respect to surface metrics
by means of the identities as

g - -
Uosam el ™ B ¥g) veees gy = Uy g (53)

Here, an overbar indicates the displacement components, as
defined in (22)

In a similar manner, the distribution of electric field is
found by use of the part of (13) in the form

23 N-1 i
33 =Sty r:2{ ,rz [ 4D (B,

-~

3

§J +0 ]} (£) 3aax (64)

This yields the distribution of electric field in a
variational form by

.23 N-1 i
§3°54 = dethE:zt(OEi e;)8F
and + (e -enect]aa = o (65)
E. = e, , ,E. =ec. (66)
o1 i 171 i

Here, the denotations by

e(z) = (z, = h )'4’(2)

a 2" ,a (67)
e (M _ ? z_ gy ()

Ta r=1 ‘rm¥,a H m=3,4,..., N-2
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JN=1) _ N=2 )
La B (1 + LN—l/hN-l)f:Q hrw,%
eém) B W W
N-2 (67)

(N—l) _ " _Lv_ (r)

3 l/hN_l(\? r;:zhr‘b )

S M o3, L N2

Q€ r X

(N=-1 . N (r)

o - l/nN"lr”:Z r r O

[ _ w o _ 1 __n _ (m) _ . _
ei ei e =] = eg = 0 ; m=2,3,...,N

are introduced.

Now, the distributions (62) and (66) are substituted into
the constitutive part of (13), and then the integrations are
carried out with respect to the thickness coordinate and the
resultants of stress and electric displacements are used
wherever feasible, with the results in variational form by

N
12 . - w23 8 a3 2.
8377, =ide s oo Lo N.T)Se o+ (W M_T)3e
[S 3] A a o a
+ (K - K )Sra3+ (Q° - Qc)ﬁe 3t (R R )5833
433 _ 33, .. (r)
+ (0 NZT) e ] dA = 0 (68)
and
N
22 - 1 1
83 =srdef,z [(FT - FJ)de
22 T Ar=1 C 1 (69)
eoct -l e 3Maa =0

The Euler-Lagrange equations of (68) and (69) are the
macroscopic constitutive relations in the form

2 2 Q 2
N2 - N2 s, m*t oo™ 2o, k%3-k*® -
C C C
33 33 (70)
a ® o] 1
-0 - - = =
0 0l =0, R R 0, N N 0
and
FY - rr - 0, 6' -c* =0 on AXT (71)
C C
Here,
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3 a8 al. %2k 1 T
{N ,Mc ’ KC ) (io, Cl' C2) (Skl)
Y 0"
kafg T
(SO' Sll 22) (Ek)
a a, a3kl T_ ka3 T
(QC, RC) = (SO, El) (ikl) (E ' El) (Ek)
33 33k1 T k33 T
NC = Co (Fkl) EO (Ek) on AXT (72a)
and
-1 i ik T ik T
(rc, GC) = (So, Sl) (ijk) + (SO' Sl) (Ek) (72b)
In the above equations,
(ikl) = (ekl’ €17 Ykl): (Ek) = (ek, e 0) (73)
are defined. Also, the elastic stiffenesses by
ij...k_ c ij...x
Sn =(C» Choy’ n-2! (74a)
with
Clj...k 4 Clj...k (74Db)
n n

are introduced.

65— GOVERNING EQUATIONS OF INCREMENTAL MOTION

In this section, within the order of approximation of the
linear representation (31) and (32), the macroscopic stress
equations of incremental motion, the macroscopic charge
equations of electrostatics and the associated natural
bcundary and initial conditions are systematically derived.
In the derivation, Mindlin's method of reduction is followed
(see, e.g., [40], and the results are expressed in both
variational and differential forms. Also, the governing
equations of pilezoelectric biased laminae are fully stated.

To begin with, the first term of (13) is written in the form

11 o N e i ik j
11 =9, ;:l‘z[(t vty

&J
(75)

—pajjguj}(r) udAdx3 = 0




for all the constituents of plezoelactric laminae. By
substituting (31) into this variational integral, using
various relations between space and surface tensorszs and
thoir derivatives, performing integrations with respect to
the thickness coordinate and recalling the resultants of
stress, acceleration and load in Section 4, one finallv

arrives at the variational equation of incremental motion
as

11 N i i i i i
&1 = f rs -
8171, = M qat ‘PE:l[(V *Ug v 1T 10 - ATy, (76)
. i i i i, . (r)
+ (W o+ TO + mo o+ mo - 0B )owi] dA = 0
where
- 3 - Q 5
vievEt - %% v o v Ly yel
° a o (77)
L B o 3 a3 33 o 3
EuT -0, W= W N + b oW
and
1 g @ o3 3,43 L a3
Lo - Uo 3 boUo ! Uo - Lo - baSLo
R 53_,\5 X _ LAl
To ‘o : 38 bSTo lo(V: So:\B)
+ (RO - “333)wa
Oz
3 a3 a3 a 33, 3
T = - +
lo To HIv) * asTo (Ro:a No yw
o 3
- AV . 78
xO( 3,1+baw:) (78}
In these eguations, the denotations of the form
s 2 ~ T "3 ' S 1g
S A L L YL L B K
c g
VAo o, Wt o Rt (79a)
and
a2 Az 2 o %ot 3 B a3 s
T o + - 2 - +
Uy N (J:? bgv3) M7 (W .q bow3) QW
23 23 13 g ag 9.
Vo™ = Ro Wy * NG vy o#bov )+ M] (W3, g% Pgw,)
o & ag : a g g8
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To Mo (v : o V3) v K (w :0 0w3)
a3 o g a3 a
+ b w (79b)
To M (v3'8+ vao) + K (w3,8 8 0)
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are introduced in terms of (45)-(59). As a last step, using
(36) and considering the continuity conditions of tractions
(591, the macroscopic stress equation of incremental motion
is expressed in variational form by

N . . .
PO i (x) N '
R o P N A b +b c™'Jevy
N (80a)
R T e R e NPT
N-1 g - : :
cpty (m oL N z ) on pleYsw (M
m=2 r=m
+[r‘.l|l (2h - hl _2h||)1~lu + 2h“bl"] éwz}dA - 0
with
ri . vi + Ui -oAi, L Ti-ﬂgi
o o
pl= ql + r;, ot o= pl + Sg (80b)

in terms of the variations of independent displacement
functions (31). From{80), the macroscoplic stress equations
folllow in differential from as

N . . . . N .
T (V1 + Ul)(r) # b - ot oL (cAl)(r)
r:l . O \T . . r:l
h e Tt e nts wh e o) e e v e
r=2
. N .
- (eBY)" + n'r (2an) 'Y on axe
- r=2
aet e orh Mot b e gy () L g ple
o r=m mr o m
. N . \
=eh) M vr oz pat) )
, . r=m ™ .
(wh o+ THy" —(2n - h' - 2n"y(vE o+ Uuh)yt o+ 2ntp
o @]
=(©BY)" = (2n = h' ~ 2h") (pAl)"® (81)

This equation or (80) represents 3(N+1) equations for the
piezoelectric biased laminae. In deriving (80) and (81),
details of lengthy computations are omitted; they are,
however, given in a recent report [35].

In a similar manner, to derive the macroscopic charge
2quations of electrostatics, from (13), the variational
volume integral of the form
. N
21 - 1 (r]) 3
53 = =" 4dt.;_ = f L5 ] =
51 .Tgt.Ar:ZEJZD .1 547 T vanax 0 (82)
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1s evaluated for all the laysrs of plezoolectric lamina-.
In doing so, (42) is insertesd into this eauation and th
integrations are carried out with respect to the thicknoes
coordinate, and then the variational integral (32) is
expressed by
o N
o2l o A1
3J = [ dtf T +d - 8¢
21 T Arzlf(F o 1 B) s o
(23)
~ ~3 . r
+(G%, -F7 + D - F);-,-]( Yaa = o
-
with &' =3¢ " = 0. This equation 1is now written with
respect to the variations of independent functions of
electric potential (41) as
N-3 N-1 -
3°0 = rdrres L vy es e e
21 T TCA'm=o vTm otz 'm Fop mrorsot 7
X (u-z)
+ Ty -(z - h F a
“'N=-2 : (N—2 ‘N—2) T
+{1 + z___/h, )h, FZ
{ N—l/ I\‘-l) N=2"N~-1 4
3 e (=2
e, 1er T 5an - o (842)
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ST i B 1 +2Z,_,/n 3 5.2
mr [ mr ( “r-17 N—l)“N—l,fjhm O mrm
L a = -7 W/ Y x3 3 p -
{ = < - O ., & = - F + h n E. .
‘o m m ThN-17N-17 m m n/Pu-1fuo {840)
the continuity of surface charge (53) is considered.
sisr-Lagrange edguations of (84) are readily written as
¢ 3 N=-1
ERE T o x FX =0 ; m=2,3,...,N-3
Lie X m r=m my r - X
C . z,. -~ h F +X
N=2 : & ( N=2 N—2) N-2 14 N-2
(85)
3
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whnich represent (Y-3) equations. Thus, the macroscopic
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equations of
form and

cs are expressed by (84) in

differential form.
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Paralleling the derivation of the macroscopic divergence
equations (75) - (85), the mechanical and electrical,
natural boundary conditions of piezoelectric biased laminae
are obtained by use of the variational principle (13). The
tractions of biased laminae are prescribed on a part

St(=CtXT) of Se and Slf and the surface charges on only Se‘

TO begin with, consider the pertinent term of (13) for the
mechanical boundary conditions, namely,

11 N i ad
Ty ° detﬁcégzlfz[T* y (t
ak 3 (r) 3
+ to u ;k)jduj} u dsdx
, 3 35, .3k 3 . _
+I g {[x3 -ng (£770+ £ ;k)]éuj} uda = 0 (86)

After evaluation as before, this equation leads to the
natural boundary conditions of tractions in variational
form ac

cp11 Yo oy v 03 7 (r) ¢y
SIT], = detﬁC;[;:lﬂN* v (v e uih T v
: . . N . 3
+{[Mz "Ua(wlj+ ng)jl +hrz_2[N2 _Ua(va
SEENE- IR v A of . najyq (m)
+ U] T Ew) (M3 -v W™+ 1720)]
m=1
N " :
3z D) e, e 0] D, ™ b
r=m j
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o ]
-y :"j C!j AL " A~ 7
JQ(V + UO ) ] J&Wj}ua (87)
7 dt 'v jl 1 ' j j' 1 -
29 s [edr - ¢ Jsvi + h'(P3 - C yewilda = 0

which yields readily the boundary conditions of tractions
as follows

- 1 J tr) _
[_Ni-ua(v“ 2 HTHE =0 (88a)
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Y J ] g (o)

fr 2 - vt e <o
[“] -y (WY T«xj)]..

« on C XT (88a)
- [ " [T) ] "xj f].j n o _

(27 = h 20"y [Ny - (vE e 02 =0
and

pl - (pd s))' =0 on S XT (88b)

in differential form as well. Besides, the natural boundary
conditions of mechanical displacements by

*
vi - vil =0 , w? - wT* = 0 on CuXT
(89)
*ll
vy = §*" = 0 w' - Y. =0 on S _ _XT
i i i i uf

are recorded.

In like manner, substituting (40) into the variational
surface integral of the form

)1 N1 N
31 51 = JTdt pcg— DZ(UQD -a,) (8%
r=2
+ %3551 ) udsax® = o (90)
and evaluating it, one reads
21 N-1 o R
51 = s . T u - 2
21 o8t ST Lo F F,a)33
+(uaG” -6,03:]%as = o (91)
in terms of the resultants (55) - (58). By use of (42), the

natural boundary conditions of surface charge are expressed
in variational form by

N=3 N-1
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and those in differential form by
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N-2 v a a i
Hy e P | S
a —
* 1+ oz /HG I P ) =0
along CXT (93)
Here,
N-1
m m _ N-1 r . _ ._
H* = G* (hm/hN—l)G* +£“:=m erF* 7 m—-2’3]-.-l\ 3
(94)
N-2  N-2_ N-1 ,
HY S = G (ng_,/hy_;)Gy (2,
_ N=2 N-1 (95)
hyoo) By © + (L + 2y /he )hy P,
with
(F, G0 ™ = 7, (1, xhyo, Muay’ (96)
m

are introduced.

Lastly, an evaluation of the volume integrals I; of (13)

yields the natural initial conditions of mechanical
displacements and electric potential by

Vi, e ) - 3;'(xa) =0, v1x", ) —25 (x%) = 0
Wl o(x e ) - 2 M) =0, Wl e - M) = 0
Mm=1,2,..., N (97)
wm(xa, £,) ~”;m(xa) = 0; m=2,3,..., N=1
on A(t,) (98)

* *
where “i ....ﬂi are given functions.

Up to now, the set of two-dimensional, approximate equations
of piezoelectric bLiased laminae is systematically and
consistently derived by means of the unified variational
principle (13) together with the linear represcntation (31)
and (32). The electroelastic equations are given both 1in
variational and differential forms at the perturbed state.
Similarly the governing equations can be derived at the
unperturbed state for the static behavior of laminae at the
unperturbed state. This is recorded in M3s].
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7- A DIRECT METHOD QOF SOLUTINN

In this section a general algorithm is pointed out which 1is
based upon Kantorovich's method for the fields of mechanical
displacements and electric potential, as an alternative of
the macromechanical analysis of piezoelectric biased laminae.
The algorithm starts from the integral principle of (3) in
lieu of its Euler-Lagrange differential equations and it
rests entirely upon a selection of the fields for each
constituent under the ad hoc assumptions for the '
piezoelectric region in Section 4. The method can be
readily and successfully employed by means of high-speed
digital computers for the macromechanical analysis.

To begin with, the fields of incremental mechanical
displacements and electric potential are expressed by

. R
afxd,e) = r [EPIE %L e fr(XB)]m
p2?+r=0 (9%a)
: m
sTixt,e) = x g _(x*,t) g (x3)]
p+q+r=0 pqr r
with
oqr m Pg &, . . @ am
£7 = |0 gyul “(x7),8 t) X
RSNV S [opgr (B195 (%) 08 (62 (x7)]
T 3 3 3. r .~y
LE, (x7), g, (% )] = (x7) (set)
Here, (apqwaniﬁapar)arethefunctionsto be determined, Whereas
(u.pq ;y @ ) are the approximating functions to be chosen
1 P4

appropriately in order to satisfy all or some of the given
boundary conditions; the rest of constraint conditions can
be taken into account throuch Lagrance multipliers as

illustrated by the author [35-. The approximating functions
should be selected as simple as possible so that operations
involving them can be carried out easily.

With the help of (99), the evaluation of the variational

integral (3) leads readily to a system of ordinary differen-

ti cquati i t). The system
ial equations in terms of apqr(t) and qur( ) Yy '

of equations can be reduced to that of nonlinear algebraic

equations for the case when vibrations and wave propagation

are considered in the piezoelectric bilased laminae.




218

E- T

The results with some applications are presented in detail
in a forthcoming report [35].

8- ON SPECIAL CASES

Various cases involving special geometry, material and
incremental motion of piezoelectric laminae may be readily
investigated with the help of the general results derived in
invariant form in the previous sections. Here attention is
first limited to the case of piezoelectric plates in which
‘;‘:ug:o (cf£.,[24]).
The results for one layer (N=1) agree with those [26].

A complete linearization in the results leads to the linear
theory of piezoelectric laminae. In such a case, it is

shown by logarithmic convexity argument that the conditions
(87) - (98) are sufficient to ensure the unigueness in
solutions of the electroelastic eguations of laminae. This
and a variety of applications of the general results to
particular problems are given in a recent report [(35].
Further, special classes of materials for the constituents

of piezoelectric laminae may be considered in the macrcscopic
constitutive relations (68)-(73), and also special kinematics
may be introduced in (31), (32) and (99).

the curvature effect vanishes, namely, b

9- SUMMARY AND CONCLUSIONS

Established herein is a systematic and consistent derivation
of the two-dimensional electroelastic egquations of
piezoelectric laminae under a mechanical bias by means of
the unified variational principle (13) together with the
linear representation (31) and (32). The electroelastic
equations given in both differential and variational forms
govern all the incremental types of laminae motions. The
variational principle generates all the fundamental eguations
of piezoelectric strained media. The results contain some
of earlier results as special cases [35]. Lastly, an
extension of the present results to viscoelastic and
electromagnetic layers will be repvorted elsewhere.
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CHAPTER 7
NUMERICAL ALGORITHMS FOR DYNAMICS OF PIEZOELECTRIC LAMINAE

ABSTRACT

Numerical algorithms are developed for the macromechanical
analysis of dynamic response of a piezoelectric strained
laminae. The laminae which is under a general state of
mechanical, static bias may comprise any number of bonded
layers, each with a distinct but uniform thickness, curvature
and electromechanical properties. 1In the first part of the
paper, a direct method of solution based essentially on
Kantorovich's method is presented for the macromechanical
analysis. The effects of elactic stiffenesses of, and the
interactions between, lav~r of the laminae are all taken
into account and all the ~ontinuity conditions are
maintained at the intcr .ices of layers. The resulting
equations accommodate the extensional, thickness shear and
flexural as well as coupled incremental motions of the
laminae. In the second part, the governing equations of
pliezoelectric s.rained laminae are recorded and then the
method of momcats is described, as an alternative, for the
macromechanical analysis. In the third part, special

cases involving the geometry, motion and material properties
of piezoelectric strained laminae are indicated.

1- INTRODUCTION

Pieuzcelectric laminae and/or composite elements with their
desirable vibration characteristics for ultrasonic epplications
are of recent demand in different technologies. The use of
these elements, the basic ideas underlying their sum and
product properties and the mathematical models to describe
tneir dynamic response are elaborated [1-3]. The research is
3tillquite active on the design, and in determining the
dynamic charasteristics, of laminae elements. Basically,

two types of mathematical models exist for the dynamic
analysis of these elements: the effective modulus model and
the effective stiffeness model. The effective modulus

model which replaces an element by a representative homogeneous
medium is relatively simple, but it abrogates the mutual
coupling of layers, and it is generally suitable for the
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static analysis of laminae. The effective stiffeness model
which incorporates all the essential features of layers
accounts for the static as well as dynamic response of
laminae. On the basis of these models, investigations were
recorded to be abundant for certain vibrational modes of
piezoelectric laminae with polarization in different
directions, whereas to be rather scanty for derivation of
the electroelastic relations of laminae which accommodate
all the types of vibrational modes [3].

It was Mindlin [4] who first described to deduce, in a
consistent and systematic manner, lower order equations from
the three-dimensional equations of elastodynamics. By use
of Mindlin's method of reduction, the author [5] obtained a
system of two-dimensional, approximate governing equations
for vibrations of thermopiezoelectric laminae. Karnaukhov
and Kirichok [6,7] set up the governing ecuations of laminated
piezoelectric shells by taking into account the effect of
viscosity and temperature. Also, Evseichik, Rudnitskii

and Shul'ga [8] derived the electroelastic layers. More
recently, the author [9] extended his works [5,10] so as to
derive the macroscopic equations of a viezoelectric laminae
under a bias. Mikhailov and Parton [11] reported analytical
studies involving certain vibrations of multilayered piezo-
electric elements subjected to polarizations in different
directions and various electric and/or mechanical loading
conditions using standard approximate methods of numerical
analysis. 1In these studies, no results were provided vyet
for the existence and uniqueness of solutions (cf.,[S] for
the uniqueness only), and also a unified algorithm for
numerical solutions is still unavailable; the latter is
taken up in this paper.

Various methods were used for numerical solutions of the
initial-mixed boundary value problems defined by the governing
differential equations of one and two-dimensional piezoelements
[2,3] . Of the methods, the method of Green's potential
function [12] , the Ritz-Galerkin method [13] , the asymptotic
method [14] , the finite difference method [15] , the method
of least squares [16] » the Fourier expansion collocation
method [17] , the method of Laplace transform [18] , the
method of fast Fourier transform [19], the method of z-
transform [20] , the finite element method [21,22] and the
boundary element method [23] were mentioned. Numerous
treatises appeared on the applications of these methods in
different branches of electrical engineering. Noteworthy

is a first textbook by Silvester and Ferrari [24] on the
finite element applications and the treatises by Harrington
[25] and Wang [26] on the field computation by the method of
moments. The method of moments with desirable features in




electromagnetics may form a universal approach to the
macromechanical analysis of piezoelectric elements, though
it has no application yet. This method is now described

for the analysis of dynamic response of a piezoelectric
Iaminae. Besides, a direct method of solution which is
essentially based on Kantorovich's method ]27] is presented,
as an alternative, for the macromechanical analysis.

Briefly stated, the notation to be used herein is given

in the remaining of this section. The next section contains
a summary of the fundamental equations of piezoelectric
medium under a mechanical bias; they are recorded in both
differential and variational forms. Section 3 deals with

the geometry of a piezoelectric laminae, and also, for ease
of quick reference, the relations between space and surface
tensor are recorded in this section. The strained laminae
may comprise any number of bonded layers, each with a
distinct but uniform thickness, curvature and electro-
mecnhanical properties. In Section 4, a direct method of
solutions which is based on Kantorovich's method is described
for the macromechanical analysis of dynamic response of the
piezoelectric strained laminae. In addition, the method of
mcements 1s developed as an alternative of the macromechanical
analysis in Section 5. Special cases involving the geometry,
motion and material properties of piezoelectric strained
laminae are presented in Section 6 and concluding remarks

in Section 7.

Notatilion

In the paper, standard tensor notation is freely used in a
Euclidean 3-Space E. Accordingly, Einstein's summation
cenvention is implied over all repeated Latin indices
{1,2,3) and Greek indices (1,2) that stand for space and
surface tensors, respectively, unless they are put within
parantheses. In the space E, the xl-system is identified

by a fixed, rignt-handed system of geodesic normal convected
(intrinsic) coordinates. All the field quantities are
described in Lagrangian formulation, they are indicated by

a zero 1index in the initial state, by an asterisk when they
are prescripbed and by an overbar when they are referred to
the base vectors of layer midsurface. A superposed dot
stands for time differentiation, a comma for partial
differentiation with respect to the indicated space coordinate,
and a semicolon and a colon for covariant differentiation




with respect to the indicated coordinate, using the space
and surface metrics, respectively. The index (m) which tekes
the values 1,2,...,N refers to the m-th constituent from
the lower face or first layer of piezoelectric laminae, and
also a prime is assigned to stand for the upper face of a
layer and a double prime for its lower face. Moreover, B(t)
refers to a regular, finite and bounded region B of the
space E at time t, B(=BU3B) to the closure of B with its
boundary surface ¢B, T to Ehe time interval [t S N I to
the thickness coordinate x~, Z to the thickness ifiterval
Ez-h,z+h] with the layer thickness 2h and BxT to the domain

of definitions of the functions of the space coordinates and
time.

2- FUNDAMENTAL EQUATIONS FOR INCREMENTAL MOTIONS IN
PIEZOELECTRICITY

In the Euclidean 3-space E, let B+oB with its boundary
suvface ¢B, denote a regular, finite and bounded region of
piezoelectric elastic medium at its reference (initial)
state at time t=t_ . The piezoelectric region which is
subjected to statfc initial stresses is in equilibrium.
This initial (unperturbed) state acquires its spatial
(perturbed) state by small incremental motions superimposed
upon the finite static deformation of the piezoelectric
region at the time interval T=[} +t,). The elastic region is
referred to by a fixed, right—hagdeé system of general
convected (intrinsic) coordinates x! in the space E. The
entire boundary surface oB consists of the complementary
regular subsurfaces (¢B_,2B ) or (&8B_, 3By), and the unit
outward vector normal t6 aBY is denq%ed by n.. The domain

of definitions for the functions (x?!,t) is dénoted by

BxT, where B(=BU¢B) being the closure of the region. All the
field quantities of the piezoelectric region are described

in Lagrangian formulation,

Now, the three-dimensional fundamental equations of incre-
mental motions of the piezoelectric strained reagion are
recorded [28,29] .

Divergence equatilons

) .-pal=0  in BXT (1)

J_ o i3, .1k 3
L=t +to Uty

{=pY =0 in  BXT (2)
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with the dofinitions
tij,téj initial and incremental stross tenzors
ui incremental mechanical displacem:nt vectoy
0 mass density of the undeforned body
a- Lagrangian acceleration vector (=i11)
Dt electric displacement vector

K..=S. .- %(u _+u. .)=0 in BXT (3)
i3 713 277i:7 Jsi
M, =E.~(=% .)=0 in BXT (4)
i .1
whare
S.. strain tensor
13
Ei quasi-static electric field vector
3 2lectric potential
Constitutive relatilions
Lol 213%ig _cKUJp Lo in BXT (5)
<1 k
K* =pt= (-5, 4ot EL) =0 in BXT (6)
3= ]
voere o
% . jik <113
Clj L =2lastic constants (=le 1 =C )
ctl” niezoelectric strain constants (=Clﬂj)
She. Zielectric permittivity (=le)
Boundarvy condiltilions
J_o3_. o Lido ik 3L .
Ly=13 Li(_ +to u;k)—O on athT (7)
* *
K,=u,=-u.=0 on 5B XT (8)
i 71 71 u
i
L,=5,-n.D7=0 on 3B XT (9)
i o
K,=% =50 on  3B,XT (10)
with
Jopn. <) (11)
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S tlj+tlku]

Tk (12)
where
TJ Trefftz stress vector
g surface charge

Ini1tial condi¢tions

3 v dy =
ui(xj,to) v, (x7)=0
ug (7 ) =wl(x7) =0 in B(t,) (13)

¢ (xl,to)—w*(x3)=o

The differential governing equations (1)-(13) of incremental
motions are alternatively stated in variational form
[10,30,31] by use of the principle of virtual work (or
Hamilton's principle). The principle of virtual work is
stated for the piezoelectirc strained region as an
assertation of the form.

_62+6T+5*w=0

with the denotations
- ij nice ol .

L i
5 w:_%B(T*éui+o*6¢)dS (14)

where a*w stands for the work done by external mechanical
and electrical forces, and §* with an asterisk is used to
distinguish it from the variation operator §. In equation
(14), the guantities of the form.

et Teeld sij=sij+% uk;iuk;j , Trettee] (15)
are introduced. Integrating equation (14) over the time
interval T, carrying out variations, applying the Green-
Gauss transformation of integrals for the regular region
B and implying the usual arguments on incremental quantities,
one finally arrives a two-field variational principle [10] as

i i
sx{ujs0}=rq dth(Lléui+[6¢)dV+fT dthB(c*éui+£;5¢)dS=O

(16)

E .
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which yields the equations of incremental motion (1), the
charge equation of electrostatics (2) and the associated
natural boundary conditions of tractions and surface charge
{(7) and (9). The variational principle (16) includes the
rest of the governing equations (3)=-(6), (8),(10) and (13)
together with

6ui=6¢:0 in B(to) and B(tl) (17)

as its constraint conditions.

3= GEOMETRY OF LAMINAE

With reference to the xl—system of general convected
coordinates in the Euclidean space E, a thin piezoelectric
strained laminae V+S, with its smooth boundary surface S
is considered at its initial (unperturbed) state at time
t=to and it is brought into its spatial state through some
elastic process at T=[t sty). The laminae is composed of
N constituents: two pergec%ly conducting, lower and upper
face electrodes and (N-2) pilezoelectric layers between them.
The lower face electrode is indicated by a prime or m=1,
the layers by m=2,...,(N-1), and the upper face electrode by
a double prime or m=N. Each constituent may possess
distinct but uniform thickness 2 h (m=1,2,...,N}), curvature
and electromechanical properties. The midsurface A of first
layer x3=0 is taken as the reference surface such that

x’==h ==h' , x=2H-h , £(x")=0 (18)
define the lower and upper faces, S and S __, and the edge
boundary surface S_ of the laminae. "The sufface S 1is taken

: . e, e .

as a right cyclindfical surface whose generators lie along
the normal to S,. and Su , and it intersects them along
closad, non-intersecting ~smooth Jordan curves C [32]. The
bonding surface between the m-th and (m+1l)th constituents
is denoted by A the midsurface of the m-th constituent
by A_ and the unit outward vector normal to A' or
A" b? n., and that to the edge boundary surface of the m-th
constitient by vy

m, m+1’

On the reference surface A, x3=0 is chosen positively upward
and the x%- coordinate curves form a system of curvilinear
coordinates. In addition, a system of local coordinates

x% situated on A, is introduced by
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H
3.3
x;=xa P X =xT=z o, m=1,2,...,N (19)
Here, z is the distance between the parallel midsurfaces
A and Am, hence, the parametric equatiocns of the form
3 3. _
xm—O P zm~0 (20)
and
X"-h =0 x3 +h =0
m m = m+l ‘m+l
3 (21) .
xT=(z +h )=0 , x"-(z__ 4 h ,1)=0
with
m
- T - -
Zn” r=l(2 %r %m)hr (22)

clearly define the midsurface Am and the bonding surface

Am,m+l'

In the x'-coordinate system, the position vector R of a
generic point P in the laminae space V takes the form
3 a

B(xi)=g(xa)+x §3(x ) (235

with
§a .§3=O ’ §3.§3=1 (24)

Here, r represents the position vector of the projection

of P on, a_ =R (xB,O) the covariant base vectors of, and
. T A ’

a2, the unit vec%or normal to, the reference surface A.

T%us, the base vectors,and metric and conjugate tensors of

the space V are defined by

_ 3 _ B . oa_,~1lia B8 . .3 .3
Jam3*X ?3,a_ FaZp 7 7= ’89 ! ?3_? =a53=a (25)
and
_ o v aB_~lyja =18 _ov - -
9&5_“ausaov ‘ 9™ = (y )o(“ ), a 9&3 0, 9345=1 (26)

with the shifters of the form
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pis sebs 2, p“(jl)z - 52, Lohe =g CES T
u={ug | (27)
and those of A by
au5=§a .gs =9as(x?o), aa3=9qs(x?o), a®*? a80=ﬁg '
aa3=aa3=0, a33=a33=1 (28)

[0
in which aag,bQL8 , and ca5=ba0b stand for the first,
second, and third fundamental forms of A, respectively.
By use of the shifters, the components of a vector field
of the form
a 3

x=x* 9. = ., 9%=% a +§;§3: %a + Ya

~ 1 1 (29)

a a

3

which are referred respectively to the base vectors of the
laminae space V and those of the reference surface A are
assaciated with one another as

B a - -2 - — -
o= FoXs, C=(EH 2 X T B, T -@h i,

U

a

oy 2

=X 3 (30)

In addition, the relations between space and surface tensors
as

oo — -3 o -1, 0 ,~—v v —3
Xa;sz UQ(X,:gb\jg‘( ) X ;B=(U )\)(X :S'b8 X)
Xy .a7H X X, = X, +b° X (31)
;3 T« , 37 35a 3,0 "o g8
a _, -1, a =8 3 _ =3 =2
x;3—(, )S ,3 ' X;a— Xra+ba8
O, X, .= Xo,= X
i3 "3;3 73,3 7,37 73,3
and the identities of the form
Voad v 63 v -1, B 0O a3 v 32
U =(uyu” - - ub
wu X - (upax )'Sﬂua (u )0 b8 X ubge  x
3 -1 v 33
b X fa-(,x3 )t uutbaa -u )fba X (32)
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8 a3 _ B a3 a _ a 3
Ha X 7a_(u X ):3 ! X ;a-(ux ):a TH,3x s

are recorded for later use. Here and henceforth, colons are

used to designate covariant derivatives with respect to the
indicated coordinate by use of surface metrics and semicolons

those by use of space metrics. A more elaborate account of
preliminaries from the differential geometry of a surface may

be found [33]. !

"urther, the elements of volume dVv, of surface d5 on S, of
area dA on A, and of line ds along C are of the forms

3 3 3
av=yq dx'dx?dx>= ,dA dx =ds dx  , n_ ds= pv_ds dx  (33)

with
u=;u§[=(g/a)1/2=1-2x3 K +(x7)° K,
(34)
a=la v g=lg;51s
and
B - T
Kp= 3 b2 o Kg-]bsl—b (35)

where Kp and Kg are the mean and Gaussian curvatures of the
reference surf ce A. In the foregoing relatins, ¢ and
its inverse (u")g are of particular importance. T%ey play
the role of shifters between space and surface tensors, and
they do exist when

|2 <R .| (36)

min
where R_. denotes the least principal radius of curvature

of A; tB1% sufficient condition is evidently satisfied by
the fundamental assumption of the form

2H/ R . J<<l (37)
min

for the laminae region.
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4- A DIRECT METHOD OF SOLUTION

In this section, a direct method of solution which is
essentially based on Kantorovich's method for the mechanical
displacements and the electric potantial is presented for

the macromechanical analysis of piezoelectric strained
laminae. The series expansions below has freedom to account
for all the significant mechanical and electrical effects

in each constituent as well as for the dynamic internations
of adherent constituents. The unified method of soclution pro-
vides an alternative for the vibration analysis of piezoelectric
laminae under a mechanical bias (cf., [5]-[9]).
Mechanical displacements and
e lectric potential
In mathematical terms, the fundamental assumption (37)
defines the laminae region and it allows to treat the
laminae region as a two-dimensional continuum. In addition
to (37), suitable regularity, smoothness and absence of any
Kind ¢f singularities are considered for the laminae region.
All the field guantities together with their derivatives are
taken to be exist and to be single-valued and continuous
functions of the space coordinates and time in the closure
of region V, and not to vary widely across the thickness of
laminae constituents. In accordance with these assumptions,
the fields of incremental mechanical displacements and
electric potential which are chosen as a starting point of
derivation are represented, applying Weierstrass's theorem,
by the series expansions in thickness coordinate as

3

Loy (m e ePA % ey L (%7,
i Y

T wd .2 2 @
(%7 E) s (xT, ) 00 qfo rio

gpqr(xa,t)gr(XB)
for the m-th constituent. Here, u. stands for the shifted
components of displacements defined by (29), and £ P and
o for coordinate or approximating functions, th& system
par of which is assumed to be complete, and they are
exoressed by

1 (M) (384)

i qu = I (l) Pq a A a 38b)
£y *Ipqr } ‘“pqr(t)ui (x7), qur(t)qu(x )} (
The functions u and % are chosen appropriately to satisfy

all or some of P9 the P4 prescribed displacement and electric
potential boundary conditions. Also, the functions fr and

are known iori, whereas a and § are
% & priori, wh pqr pqr

Sopwras
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functions to be determined. The functions u and ¢

should be chosen as simple as possible so P that P9
operations involving them can be carried out easily. They
may be chosen as products of power series and trigonometric
series (or surface harmonics, Legendre polynomials and
alike) multiplied by certain functions which are introduced
to satisfy the boundary conditions. Further, a truncated
form of the expansions above, namely,

a. e Mo PO (o {1) yPa 3 (M%) T (39a)

A ps0 g0 rz0 ‘“pgr i ' qur¢pq ’
with

£m0 = Fra ol palZleg o, all)s (39b)

r par “par ‘ %par "pgr ‘ %pgr ‘par
is considered. In (39), N=P+Q+R may be called the order of

approximation.
Continuity conditions
At the interfaces of laminae constituents, the continuity

conditions of tractions which result from Newton's third
law of mechanics are given by

St =0 = -

L(m)+r(m+1) 0; m=1,2,...,N=-1 on Sm'm+1XT (40)
where Sm me 1 denotes the bonding surface between the m-th
and ’ (m+1)-th constituents. On the other hand, the

continuity of mechanical displacements depends on the
manufacturing process of laminae, and the constituents of
laminae are assumed herein to be perfectly bonded, and hence
the continuity conditions are expressed by

=(m) _—{(m+1) _, . __ _
ui ui =0 ; m=1,2,¢¢.,N=-1 on Sm,m+1 XT (41)

Moreover, the continuity of surface charge and that of
electric potential are stated by

g‘m)+o<m+1)=0 R ¢(m)_¢(m+1):0 ; m=1,2,...,N-1 on

Sm,m+1 XT (42}

on the bonding surfaces of laminae.

Now, using equations (39) and (41) the continuity of
mechanical displacements is expressed by

Tong
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A
> Lo (1) pag r (1) pc r
: [ ui 2o 7] - L uP(z-n) "] 0
1

“pgr *par-i (m+ 1)
(43)

This equation expresses point by point continuity of
incremental displacements at the interface Sm and it
can be hardly satisfied. Nevertheless, with the help
of an averaging procedure, equation (43) may be stated in
a more suitable form by

ym+l’

PIQIR l(m)
< pqr =0; 1i=1,2,3 and m=1,2,...,N-1 (44a)
p,g,r=0
with
vim e )y pany (m_ () pary (mrl) g, (44b)
par T P4gr 1 pgr 1
where
0% =p P9 oga ; (UrPYE,unPITy o 0BT at kP (z+h,z-h)
1 1 1 1 1

(44c)

The continuity of electric potential is written as follows

P,:‘,R (l"’l)
- ay =0 5 m=1,2,...,N-1 (45a)
£,q,r=0 P
with
L P VI B N S L A L P e (45b)
par par  pgr pgr -’ pqr
where
3. r 3
. =r H ;' R " = > = +n, -h
ng A¢pqu { pgr pqr) u¢pq(x ) at x =(z+h,z-h)

(45c)

is intreduced as in (45) and equations (39) and (42) are used.

The continuity conditions (40,42) are explicitly given in
the next section.

P
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Initial conditions

In view of equations (13), the initial conditions are
expressed by

P,0,R . ,
* * 1= .
(W= I u?qr[aé;;(to), a;;l(to)]}(m)zo
p,49,r=0
46
« PrOsR (1) (48]
[¢ - pX qury o (to)j wlog
p,q,L‘:O p.xr
where
* k% L I 3
(VioW 0 )= L dA [lvi,wgey ) pdx
A Z (47)
pgr 4 B Pa 3.r..3
UZ ’ = Ut =, (X7 ) T adx
(U] pqr) é( i ¢pq)L(
are introduced.
Stresses and E lectryr ic
Displacements
with the help of equations (3)-(5), one obtains the
components of stress tensor as
ij ijkl kij
t~7=C uk;1+C ¢ % (48)

and inserting (39) into this eguation, the components are
written in the form

iy TR ij1 132 133 i3 3 r
t = z {u o +Uu +Uu v +¢ Y ) (x7)
- paripgr “pgrrpqr pqr pqr Tpqr’pqr
p,gq,r=0
(4%a)
G131 1313, _ ijg3,.14 P9
apqr-[ml)c (r=1)C b Juj
1718 _1jo8 1 Pg
+[c -C (1-84 )by ]ul:8
i32 ij23_, ije3, 24 pg 49b
upqr—[(r+1)c (r-1)C b Jud (49b)

ij2¢_ijoB ,,_ 24 P9
+EC ¢ (1 dO,r)bGJUZ:B
i33_, ~1ijus _
upqr-‘c r bag+(1 6O,r)cugj

w333 i1y u§q+c13“3(r+1)u§q
,(1
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and

2rd ot w031 (re1) g (49¢)
pgr P, pq

Similarly, the components of electric displacements are given
by
. . ..
pr=ctI¥ -ctly . (50)
3]
where equations (4) and (6) are considered. Substituting
(39) into (50), one obtains the components as

uj;k

2 : . . .
Di- - (ull “ +u12 g ul3 v +¢1 v )(x3)r
5 r=0 pdr pgqr p9qr pqr pqr pdgr "p9r pqr
PG, (51a)
where
Al _r ~113_ 103 14 pg
pqr- L{rr1)C (r-1)Cc™""b_Juf
i1z __ie8 ,,_ 1, .Pq
+[c (1= b _Jui?,
12 i23 103, 2
upqr=f(r+l)c -(r-1)c*%p ]ugq
122 _ioB . 24 P9
+[c CToT =8 )b Tud d (51b)
i3 _,iadr_ =
par (O Dh =ty e ]
vet ey WBYcted (par) o BY
3 3/0.
and
i al 3i
=C +C r+l 51c
*pqr *pa,a (1) 95q (31e)

Continuty conditions

The continuity conditions of tractions (40) are expressed by

P,0,R 3 - e . .
; [ (C;ii)+Coléél)a;qr+cgqupqr](m)=07
P,q4,r=0 j=1 . !

m=1,2,...,N=1 (52a)
Wwith

Tagpeo e
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ij(m)y__ij(m)__ij(m+1) Cij(m) i3 tm) _ 13 (m+1)
kin Jx1n k1n v Co kin "9,x1nPo,k1n
(52b)
i(m)_ _i(m)_ i(m+1)
Cxin “9%1n “Pxin
where
si ai o 3,i_3,a 381, 3.0,
(91nrPxin = {9 (Mk1p™ Pplkan) () 72R

3i 31, _ 33i,.3,n 3 _
(qkln'pkln)_ fu ukln(x y'dA at x7={(z+h,z-h) (53a)

(qiln’piln): i” ¢i%n(x3)ndA
and
(95 k1n Poyk1n’ = i“‘x3’n—l‘“tg3“§1+x3tgvu;1:v)dA
(qg?kln;pg?kln)=-gu(x3)“'1 tg“bi uf? aa )
at x3=(z+h,z—h)
(qg?kln;pg?kln)= i u(x3)ntgvbiu%i) aa

33 33

( 1, .33.k1, 3,30kl
95,kx1n’Po,k1n

_ 3,n-
) = é p(x7) {(n o U3 +X tO HBAQdA

at the interfaces Sm sl between the layers (m) and (m+l).
Likewise, the contin@ity of surface charge at S 1s

. . m +
written in the form pm+l

P'QIR 3

(i) 1 (m)
z (.Z a +d Y ) =0 (54a)
0,q,r=0 171 PAr PAr "pqr par
with
i(m):fi(m)_ei(m+l)' (m):f(m)_e(m+1) (54b)
par par par pdr pgr p4gr
where
i i _ 31 3,.n
(fkln'ekln)— i Uukln (x7) "dA 3
3 at x_=(z+h,z-h) (55)
(fkln'ekln): Tvdyn dA

:\
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Here, the relationships (31) and the identities (32) are
useod.

Jariational integral of
incremental motlon

The equations of incremental motion (16} are written for a
constituent in the form

A= Jae/LTudvs S oae JdA f[(tlj”’tcl,kuj-k)-i_
T n T A 7 ’ ’

—oajjéuj udx3=0 (56)

By using the identities (30)-(32) and (54) and the relationships
{33)~(35), eguation (56) can be written in terms of the
shifted components of incremental mechanical displacements

as follows.

. . 8
23 = fasrl { (L8, ).,
Log A Pa

. 33 —a _pou L B3~

+OuSEJto (U:E b§u3)+“to u,3]
3a ,— g - L 33—

T N A I E IV

- 3
-Lpu }§u3:> dx~=0 (57)

ne expansions (39) into this ecquation and

y .
hen erfoerr; integrations over the thickness of
o 1 n e
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P,Q,R 3 s
§J;= s adt 2 z, %T;J-b; 63T:il)
T A p,q,r=0 1= Vo ¢
w0 Jov3, 3 g Jnv3 vB_ v8
+[ b\) 8Tr +6(J) (bv o'r +bvBTl’ CVSTF 1)]
o033 0 JmM LI A] pg 3
+[ r(T 1 b 8 Tr%+Pr ) ]} u(JPQqu da
PIQIR PIQIR 3 3 Ol] Ol] (l), (:[)
+/ atf % L L1 151 Tpgrkin™ogrkin@rn dpar
T A p,g,r=0 k,1l,n=0 I~ ; : =
P,2,R P, QR 3 : . .
. LklIng (3) ..
-fdas = p) T p(Aj yoad, -n) Y ond )il GR=0
T A p,a,r=0k,1,n=0 j=1" "' pgrkln-kln rkin~u par
(58)
with the denotations of the form
ij i3, ij i3 3,r..3
(Tr ,Tor)— ;u(t p O)(X ) T dx
= fuxD T ax? (59)
r
Z
3 , B < S A - o lv) ,Pa

A , u; : = 3 :
pgrkln m+r k17 {j) pgrkln n+r+1°57,°kl T (3)

e oby s ue3ia3n% T 3T at xP=(z+h,z-n)
r’~r v o
i_ i A1
Rp=Py=9r
and
o2 _(mC3 v o3 v {(v)
qurkln (To,n+r uk1:5+nTo,n+r—luk1):oupq
IR U DYy x W) _ 30 v 33 GY e
bcTo,n+r bo JI:lupq ¢ o,n+r—1uk1:g+nTo,n+r—2uk1)u(y)
o3v L m T3 v 3 (v) 30 v. 3 pPqg
pgrkln’ (To,n+r 3 \1):gupq +rTo,n+r-lbouk1u(v)
Fv 08 3 a3 3 v)
L qj(fg,n+ruk1,s+nTo,n+r—l ukl]upq
o3 _ .08 v (v 3 _ % W) v 3
qurkln_ To,n+r bsukl ):gpq rTo,n+r—1bo Y1 Ypq
s TP o) 3 b3 (60a)

u
vR o,ntr Kkl o,n+r-1 e 'kl P



AR T u3 +q‘u3 u3 ) u3 v LS L2
1 N L - . 1 (8
oyrkin o,nrr K1, 2 To,nrr-1"k1I s g TRy To,ntr Tk g
. “3» 3 +1T33 u3 )u3
T o,n+r- 1 &1, v o,n+r-2 "kl Tpg
and
1 21 31, 3.r
» o = U = ol
(’or’;or) “to ( ) at (z+h,z-h)
i i i
R =p' ot
or “or Tor
nOV3 ov3 P AC BY {v) pg
* k1; ’ ¥ )"’ 1< ) u 1 u
pgrkln parkln o,n+r" " “o,n+r o K 3
033 g 3 3 pa (A0%)
P,2) =(P,Q +n{P, [V
(=, parkln (P, Q )o, k1, { Q)o n+r-1 "k173
o3 v 3 pg 3
P,n ==(pP, b7ou . us at x"=(z+h,z-h)
N S T g, ners Y1t (z+2,
) o v pPg v 3 . DA
o,z =(p,D u T2 s Y4n(P,0) SRSRILALNE
(= )pquln ( ")o,n+r kl:o (v) A (F. o,n+r=1"k1 (v
RO = (p-0) T
pgrkln pqrrlin
In egJuaticn (58), the first term contains incremental stress
resultants, the second term includes acceleration resultants
ard the third term accounts for mechanical bias, that is,
initial stress resyultants. The incremental stress resultants
in the forrm
.. P,.,R 3 ..
i _ 1 ( . ulj(S)_ *j ) (6 1)
vt Fner ' s%o Ykln *kin’%k1n Ykirn :
;<,;,T‘AZQ
and the load resultants by
D, P 3
. f i AN S 2 .
i = bt i(s) (s) 1
(z,2 = L o 0 : +(D,C B : £a)
e e T Cg2y Erdyny 2x1n" P Depnrtein (5220
kln=0
"4‘]ith
if{sz) r 2i(s) i 3v{(s)
(z,c), = ot w) u -{., h(: u
"‘)Klnr L, ‘n+r kln ST )n+r+1 c k1l J
i — L 31 - 1 " l 3’
(p'q)klnr [ "ner®kin Gitru )p+r+1 (kal ]

(6:21)
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i
W
(u',u")r=u(x3)r at x3=(z+h,z—h) (620)
and
Rl P,ZQ,R { g () (s) i )
r s=1 klnr ®k1n klnrYkln
k,1,n=0
(62c)

1(3) _ ., i(s) i PRI |
Tkinr™ =l q)klm: ! rklnr_(p q)klnr

are obtained through equations (49) and (59). Inserting
(62) and (63) into the variational integral (58) and
integrating over the midsurface of constituent, one finally
arrives at the equation of the form

PIQ!R P'Q,R, 3 3 PR . .
8792/ dav I z [ r ot +Mg;§k1n)“é$;
T P,9,r=0 k,1,n=0 J=1 i=1 pgrkln ' -
) \]
+(Mpquln pquln)Ykln
(63)
3 0ij (l) 3 < (3) (3)
" Z{ pqu1n+Npqu1n *¢1n poqulnakln jéapqr

for a layer. 1In this equation, the quantities of functions
(x%) averaged over the midsurface are defined by

[(U Ojl bvélu 081) +(_b063

qrxln n+r%k1n n+r+1%k1n’ : g o¥n+r
3 0.1 v3i
+6(j)bvug“m»r) Yk1n
3, _ VL VB 331
+5j(bv8un+r Cva¥n+r+1’ “kin r(“nw‘rwklukln
IR P4
bvéo n+r kln)]u(J)dA
j _ ol _ BV J 8 o J
Mpquln“i[(“n+r k1ln gdv”n+r+l¢kln):3+( NI
3 o .j v3 (64)
¥ U(j)QJ%J%+r)¢k1n
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§
3 _ JVE 433
+"‘j(b\’ﬁurwr CVﬁun+r+1)")k1n r(’ln+r—1bk1n
0 s3] 3v ,Pa
- o)
b, Oun+r¢k1n)] (3) dA
J J (3)v SN
qurkln‘ A(qurkln qurkln év)“A (64)
. ij I ij uP4
(KrL) oGrkin A(p'q)klnr (3)98 -« \
3 - Pq
(K, L)pquln ~£ (P, q)klnr (3) da
and
oij B oij
(K’L)pquln_g (P,Q)pquln dA (65)
ij 01j - 1] 1 _t,013
(vt ) parrin= LE=D) 77 (R=L) 7, (KL ]
oij oij
parkxln i pgrkln dA

in which all the guantities are constant by definition.

guation (63) represents the variational integral of
incremental motion for a constituent, and it 1s now evaluated
or all the constituents of piezoelectric laminae as follows.

th b= 1T

N
¢J = r 53
m=1

(m) _
1 =0 (66)

With the help of equation (65), this equation can be expressed
by

N P,Q,R P,Q,R 3 .
sJ= f @t z 5 z ((pqulré ;%;)(m) (67a)
T m=1 p,a,r=0 k,1,n=0 j=1
W l t h
U3 e 3 yld 0i] (1) 4] (m)
‘pquln_[iil(wpquln+lpquln)d‘1n+JpqulnYk1n]
3 . .
I (K 1] LxOL3 )a(l)](N)
i=1 pquln parkln “kln
2
7o (pid 0ij (1)q (1) .
[izl(qurkln+qurkln kln] ( )
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Kegomtom

J (N} _ ;3 (1)_
+(qurklnYkln) (qurklnykln)
- J - (3), (m) 7
(poqulnakln) (67b)

In eguation (67), the continuity conditions of tractions (52)
are taken into account

vV a
of

)]

iation l boundary Conditione
rac¢tio S

fa2a
3

Paralleling to the above derivation, the associated natural b
boundary conditions of tractions are established. The

tractions are taken to be specified on the edge boundary

surface Se, while the displacements (39) are prescribed on

the faces,; and hence the variational surface integral (16) 1is
written in the forn.

. N
* -
= Jat; ysu.dss fat 6 3 v [1%3
T 3B T C m=1 zm“
. . : m 3
_(taj.‘_tgku];k)] (r])auj( )udCdX (68)
By using (30,(31),(39) and (62}, one obtains
N P,Q,R P,Q,R 3 : :
% *j {3) (m)
iJ =f 4t : z T I (x Sa ) (69a)
T m=1 p,q,r=0 k,1,n=0 j=1 parklin”pqr
where
. 3 .. .. . . .
* *
JFjAm) _*3(m) ijJ o1] (i), 03 (3)
*parkln Mpqr [ El(Hpqu1n+Hpquln)ak1n+Hpqu1nak1n
] (m) o
+Hpqu1nYkln] (650)
with
13 - . ‘ aij_‘ o i1 a8, (3)
npquln “va(“n+ruk1n Ln+r+lbs 6oukln)upq de
C (70)
iJ Sy al _ o J.a8 ., (3)
Aogrkin” gva(“n+r¢k1n Hner+12g 6o¢k1n)upq de
and
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(1o (1) L,03a y= B Ba a®
paqrkln’ pgrkin’ = c 8 To,ntr kl:g'
® Bo 3 (a)
-b
, 13 o o,n+r+1uk1)upq de
oa o) - Bo () 3 3
Mogrkin fpgrkin’ = £VeTo, ner (Poak1 ¥k, o) Upg @€ 71
oi B Bi (i) i
pgrkln’ gven To,n+r—1 k1 Ypg de
ei_ . ol 3,r, 3 *i ali_,o.1 aB (1)
LN EER (x*)Fax” Moo= gvéT*r bpsy Thp,)Upy d¢

are defined.
Variational integral of c harge
eguation

As in the derivation of the variational integral of
incremental motion above, the variational form of the charge

equation of electrostatics (16) is expressed by

(93]

I,= / dt f{&3dv= [ dt [ dA S Dfia¢udx3 (72)
T B T A z

for a constituent. The integration of this equation with
respect to the thickness coordinate x~ yields

P,Q/R

3
s1,= f dt [ dA g (C* -rc _+e_ ) ¢_ 8y (732)
1 T a D,q,r=0 r:a r-1 "r pg’ 'par
with
i r
St ot tand
z (732)
. 3.3 3
(Cr,cr)=uD (x>)Y at x’=(z+h,z-h); erzcr—dr

where the expansion (39) and the identities (32) are used.
In equation (73), the cross electric displacements and the
surface charge resultants are obtained as

clo P,E,R o g Gi(s) (s) i
r .1 n.o D*r gIg Ckln ®kln “Pkin'kln
P,Q,F 3 (74)
- S v 3 (i) 3
et Gherr e (2 Yarkin®kin ¥ kin)
k,l,n=0 1_-_-1

S
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Next, substituting this equation into the variational
integral (73 and considering it for all the constituents of
piezoelectric laminae, one arrives at

N-1 P,Q,R P,Q,R

(m)
§I= 7 dt I by s (x §Ypgy) (75)
T m=2 p,g,r=0 k,1,n=0 Parkinipax
with
3 . .

(m) -( 1 EL (1) g y (m)

“pgrkln io1 pgrkln®kln’ “pgrklnY¥kln
3 . .
i (1) (W)
+(iilequlnak1n+qurklnYkln)
3 . .
-( 5 L (1) (1) i
(i:1Cpqulnuk1n+cpqu1nYk1n) (7¢)
and

. . i3 .

(El’E)pork1n=f[un+r(u“l,¢“)k1n:a'r“n+r-1(“ a ’kln]’pqu
- A
i :r 31 3: -— i

(D'C)pquln Aun+rukln¢pqu at x"={z+h,z-h) (77)
(D,C) Sy el 6 aa

'~ pgrkln n+r k1ln' pg

A

Yere, the continuity of surface charge across interfaces of
constituents (54) 1is included.

O <

o
(¢]

i a
d i

ar t 1 nal electrical boundary
on t 1 n s

The electric potential is applied to the faces of, and the
surface charges are prescribed on the edge boundary surface
of piezoelectric laminae. Thus, the electrical boundary

conditions (16) are written as

a, (m)
S (c*—vaD )

1z

(m)

udcdx3

N
z §¢

§1,= J dts £, 6¢4S= [ dt §
T 3B T Cm

(73)

As before, with the aid of equation (39), the evaluation of
this variational integral yields
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é
N PIQIR pIQIR * (m)
SIe= f dt = : L (x ey _ ) (79)
T m=1 p,q,r=0 k,1,n=0 parkln- pyr
where
. o (7 e g ) (80)
‘pgrkln “pqr i;1 pqrkln “parkln i
with
K, 3. r 3 * i * '
. é g {x7) " wdx™ , qur— ] Ar¢pq dc
C
-1 _ Lal a
(‘pquln’qurkln )= gva“n+r(dk1n'¢k1n)dc (81)
Gi el (1) G - F
ogrkln  pqrkln®kln 7 parkln pgrkln’kln
are introduced. The boundary conditions of electric
potential are expressed on the lower and upper faces,
respactively, in the form.
PI’:IR ”" (1) )
Ty = z {3 Y ) -3 =0 on S, _XT (82)
) ¥
L op,a,r=0 pqr 'pgr 1f
P,C2,R \ (N) "
Gz o (& rYp ) Hlies =0 on S XT (83)
p,q,r=0 P4 q
JikT
to== =?, COS wt (84)

wnich clearly implies that an alternative potential
ilfference is apolied to the perfectly conducting electrodes.
In eguations (82) and (83), ¢ is a constant and « denotes
the circular frequency. On the other hand, if the electrodes
are inurzsi, these equations are then replaced by

) "

& =2 =0 (85)
on thne faces. The boundary conditions (82)-(85) are assumed
to te satisfied by (39); however, they may be easily taking
into account by use of Lagrange undetermined multipliers.
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S m of ordinary differential
e ions

At this point it is desirable to return the variational
integral (16) of the form

1o 1(m) (m) 4 _
6x“apqr Ypor =63 +8I+87, +81, =0 (86)

which has the continuity conditions (44) and (45) as its
constraints. This variational integral is %uamented
through Lagrange undetermined multipliers (A, and *_ where
m=1,2,...,N-1 and j=1,2,3) so as to relax j the
constraint conditions as follows.

N ;13 P’S’R Ryl ym)

(1) "pgr  m pgr

d
(3
(o)
I~

)=0 87)
m=1 i=1 p,q,r=0

which readily leads, after taking variations, to

N ; P,Q, P, O R *
Y=z fdt I z + -5 ) Sy
T m=l p,q,r=0 k, 1 n= o(><pquln Yparkln™ pqr’ “Vpar
3 . .
5 ] «*] o3 o (3) q
+j;l(xoquln oarkln” ‘par qu (28a)
3
+ T vl oS4y 8}
j=1 P9T P
where
cAm) __qos(m)y 4" (m) sy o' (m)y
“pgr- (1==) par X AR pgr m
(€8b)
53 (m) _ "3(m),m-1 m, 'j(m).m
oqr -(1-% ) qu (5 )+(l 3 )qur (3)
Owing to the fact that the variations of (ajgr and der)
and those of Lagrange multipliers are pd =
independent and arbitrary, it follows from equation (88)
PrQ/R 35 0ij i 0ij (1)m
i n=0 {iil (Mpquln+Moquln Hoquln_Hpquln Umgkhi(t)
(89a)
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r_, 0] (3) 3 3
gk in %1 () Mgk n Heqrkin! Yk1n (B (m)
3 S
r 1] 017 (1) (N) _rz (L
+Liil(qufk1n+hpquln)akln(t)] [izl parkln
oij (i) (1)
+qurkln) kln(t)J
J (N) {(m)
[ pqr<1nykln ] [qurklnYkln(“)] pqr :])
. P,Q,R .
* 14 4
=M ng)+ z [D ! rkln® kln(t)(m)
pq k,l,I’I:O pq
{(89a)
and
P,0,R 3 . .
© T 1 1 (l)
< [ 2 (el _,, -F (t) + (E
,1,n=0 1i=1 pq*-kln pquln kln pquln
(m)
- -~ -
‘pquln){kln(tU
3 .
- Rt (1) . Ly (N)
+i;1\[Dparxlh kin'® £+ pqulnYkln &)
_r~i (1) ~ (1) ___*
k pgrxln kin(t) "pqulnykln(t):l - qur 62 b)

This m of ordinary differential equations together with
(47 rn all the extensional, thickness and flexure as
well as coupled types of incremental motions for the
piezoelectric laminae under a general state of mechanical
bias. This system of governing equations which is second
order with respect to time is reduced to algebraic equations

for a case when the incremental motions become periodic as

3
¥

( D ct
ﬂ)

O]
O bl

ilj (EY, v (f’)}(m):plLtQJ , v l(m) {90}
par par par” pgr
; ] ]
In such a case, is replaced by 2 by v and
the left side of P4 equation (89%a) §qr par
P,Q,R .
x L4 ’
“par k,1,n=0 pquln "k1n
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in equations (89). Numerical solutions are availakle for the
system of governing equations under the boundary and initial
conditions prescribed for any case of interest.

5- METHOD OF MOMENTS

The method of moments is one of the universal methods of
solutions using computers, and it can be applied to alnost
any type of field equations in differential form. Though

it is very popular in electromagnetic theory, the method of
moments is_ first described herein in piezoelectricity
(cf"[34—37]). Thus, this section is devoted to describe the
method of moments for a macromechanical analysis of waves
and vibrations in the piezoelectric laminae under a general
state of initial stresses, as an alternative of the direct
method of solution presented in the previous chapter.

M h cal d ements and
e c cC pot

e c ani isplac
le tri ential
The mechanical displacements of a constituent of the
plezoelectric strained laminae are expressed by

ak(xj,t)=[Vk(xa)+x3wk(xaﬂ ei‘“Jt (92a)

with
(v. ,w. )= Pﬁp [Q(k)qu( ay B(k) Pq( Qﬂ (925)
k'k_pbq=o pq 'k ¥ 7 rPpg Yk ¥ -

which is a truncated version of equations (39) for r=1. The
expansion (92) is a generalization of the Kirchnoff-Love
hypothesis of shells,and it leads to a shear deformable
theory of shells. 1In accordance with (92), the electric
potential of a constituent is expressed by

¢(xj,t)=[K(x1)+x3£(xa)]eiwt (93a)
with P,0 )

o X
Ko Fr) = ' 9 c )
(<,5)= = [qukpq(x )1V g tpg (X )] (93b)

In the above equations, a_ ,8B v and v are unknown
coefficients to be P9 P9 P9 P9 determined. The

trial (approximating) functions (v,w)pq and (% ,£&) should
all possess second derivatives, and thev need P9 1ot to

Gy -
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satisfy any of boundary conditions, except that they should
not be zero for all (p,a) at any point in the closure B of
laminae where the exact solutions are not zero. However,

if the approximating functions do satisfy some of the
boundary conditions, certain desirable results are achieved
as pointed out by Holland and Eer Nisse [34]. Owing to the time
dependence of the mechanical displacements and the electric
potential in equations (92) and (93), henceforth the factor
(exp jwt) and the integrals over T need not be considered.

In view of equations (92) and (93), the continuity conditions
(41) and (42) are expressed by

P,Q

em_ 0 palm g 41,2,3 and m=1,2,...,N-1 (94)
1 1
p,g=0
P,
A, SIS B S VA | (95)
p,3=0 pa
where
palm)_ o (D goa, o py s (D yoay m) _ o (Yypa, o _py gl yoay (m-1)
i og i pg i pg i
M wzeme L ) ™oy« s(zehyv_ ) @D
oq og BqQ papq Pq Pq ng pa
(96)
with
r od, - s Pq . - (
VT R L) = (v T3, 0,20 ] aa (97)

are defined as in egquations (44) and (45).
Strain and el ectric field
dist>-ributions

Substitution of {92) and (93) into the gradient equations
(3) and (4) gives the distributions of strain and electric
field in the form

(Sij’Ei)=

where the notation

Trganes
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pa_ 1.9 pg (n)  pa _ 3 ,pa
OSOH“ 2(apq Ve W+qu Vn:o 2b0ﬂ qu3 )
3
pa_ 1lrg () pc (n) pg_ b X
lson— ZEBp Yo W+ pg nN:o 28n8pqw3 r=l( Vv.o g v:n)
3 . b
+2C A~V
5 gn P9 3 ]
pa_ 1 <o (v) Vi (V) 3 /Pa
2S8R ZL (L BlE g Wy By Wy o) #2530 F w3
pq_ 1 ((9) 23 .3 pa S Vg (V) Pa ,
o553= 3 ( pq Y- +upqv3'o+ v=lb0apq v E) (99a)
pq_ 13 Pq Pg
1557= 2°pq¥3,5 1254370
-3 _pqg pq_ P9 _
0%33%°5q"3 © 053371533 =0
and
Pq__ Y __ Pq pd_, ¢ Dq _
OE‘ - qu(pq,x ’ lEu = "pg %& ’ OE3 Dq‘@q'lEB =0
(39b)
are used.
Stresses and el ectric
displacements
By use of the distributions (98) in eguations (5) and (6),
one finds the components of stress tensor as
.. P,Q 2 . . . .
¢332 Dovid aF g Wil K s <1y ety ) (x3)F
0,q=0 r=0 ¥ Pk P9 r'pgk pa r pq pq r'oq pq
(100)

and the components of electric disvlacements as

. P,Q 2 . . )
p*= % Z A R Y + &85 v
gk pg r pgk pgrpg pqg r pg pq

v ) (x) T (101)

3 -

= (
P ,d= r=0 r

where the denotations of the form

ij _.idon _Pa ijv3,5.pq ., i3 __rijvn,o,pPq
oqus'c V(::n)*c bvv(o)ﬁquo' ¢ bvv(o):n
Vil __ction, 3 sctiod pa ' vii _etivne v3 (102a)
0 'pg3 an pa 3,6 1 pq3 vn Pq
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1] _~1303 pq A1 _oidongPa Wil Cpidunpo P4
o pyo < "(o) o pPg < (6):in "2 pqg v (5}
i3 1333 P9 ij __~ijun Pd,-1J0 3, P9
o"pa3C W ,lwqu— C bvnw3 w3'G,
(102a)
ij _.ijov Rele
éwpq3 C conw3
«Ii_o*id pq 30313, 13 ceid pa
o Pq rQ o P9 Pd 17 Pd ra
and
Vl :Clcnqu +C1v3boqu , Vl =_C1vnboqu
O Pdg (o) :n v (o) 1 pgo v (o) :n
i _izon 3 .ijo3.pg i _.ijvn 3 (10on
oquB_ C bonqu+c 3" lqu3 C cvnqu (102b)
1 _Aije3 pg i _.ijon_pg i __clvnpgo,Pa
oVpqos T ()" 1Ypag < “ig):n’ 2v%qo vw(c)in
Wb _~1333,pa 13 __idvny 24,0139 3,Pq
o pg3 T 3 ' 1 pqg3 vn 3 3,5
i ion B4
= 'C A\
2qu3 ¢ on 3
SLopxipag 10 G314 1 _onipg
opg ~  ,x" o’pg T~ “pqg’ 17pq i
Jith
1] 1 ij 1 ijg i
L= A | :O < = K = _ < = & :O ].O
2Ypax"27pax™" ' 4pg T« Pg 2°P3  27°pq (103)

cCr o opilec egq ons of
incre tal mo

Jus* as was done in the derivation of equation (58), the
variational integral of incremental motion (16) by

(m)

iJ= L { [ dA ICif(vi+x3w.)udx3} (104)

m=1 A z .

Grgens o0



is expressed for the piezoelectric strained laminae. After
inserting the expansion (92) into this integral and
integrating over the laminae thickness, one arrives at the
variational integral of the form

N
53= raa ¢ {[(VE+v5a1%415) pw?aX] Sv,,
A m=1 © ©
+ ka+wg+mk+m§)-pw2bkjﬁwk ym) (105)
Here, the guantities of the form
J_ ;00 _,0,.a8 T2 3_o aB_ af
v =N bSM ):a baQ r vV 'Q:a+ba6N CuBM
(106)
o ao_, 0. aR _A0 3__a _ aB_ ab
W =(M —bBK ):Ct Q ;s W _R:a N+bg5M COLBK
and
o r.ad o} o] aB, ¢ o} -
Vo - L-No (v :8 b3V3)]:a+[Mo (v :B_b5w3)J:a
) x J A2 -
?(Qow ):a Qo baw3
a3 o I, N aB,. o g, n
-N (b v3'5+b&b5vn) MO (baw3,§bub6wﬂ)
3 r~.af o ad, . .0
Vo =g vy g bsvo)]:a [vg (w3'5+05w0)]:u+
+(Qg \/‘.73) :O.TQ baﬂw’l
23 o Ro o
+No (bng .5~C DVB)‘MO (baﬁwzj CBOWB) (107)
o a5, O g o aB, o g o o
Wy =M T (v mbova)] N w #[R 7w o-bow )], 4R W
x, 0 3 B o, n AB 1 T g, n
—QO(V N bav3) MO (b V3,B b bgvn) K (ba“3,8+babﬁ“n)
3~ a3 aBd ol L B
wo ="Mo (V3’D+b‘V ﬂ~a+[Ko (w3,“ bng)] 272 (V3,a+bmv")
a . bo a Ba X
*(Ry, "N wy*M (b (v, mc V3 K, (b gW,. 5™ a53)

in terms of the stress resultants, the load resultants by




1 1 i i 1 . i
Uen g, lozoh—c , (m,m ):(o’po)(z+n)—(q ) (z-h)
(12072 o
with
3i 3, 0.1 3¢

(ol,pl):;(t oo fft ) (n,,~n,) at x =(z+h,z-h)

vog 3 3

: 1 i . 33,
(?o'q )=ltt (\_5—b3v3)+x (o —b5~3)J+to ~

a*s X3=(z*h,z—h) (102

3 3 3uar N 3 - - 33
T = ; +0D. + Kt - '
<?O'qo) tO “\3,1 bJV; x A 3, 5 ). +to 3
at %X =(z+h,z-h)
tne acceleration resultants by
k k. k k . k . X -
a =u Vi W , b =L VUL {125y
and the stress resultants by
- - s . s 3 2- L N R 43
NS M, K , (0,5, N}:;';‘Ll,xj,(XB) it ,(L,X3)t ’
Z
33 (11
- - fl T 3 3,25 ¢S 3,.:3
_'OI“OIKO- ,(QO’D\O) ’NO ='Z" Llr\: ,(‘\' ) t ’(llx )tO ’
33 el

are defined. 1In view of equations (92), (92), (10%) and
{102;-(103) and after lencthy computations, one finally
expresses the variational integral (1053) in the form

N P,O 3 P,0 . .
‘= Sda o - = o ‘_(y+1:)(;(lft()~<)};
2 m=l s,t=0 i=1 b,qg=? pax P4
) .

+(V +L _gbuﬁ)(l)st (X )k 1St (112)

~0 “O - pak “u'pas 1

oo (iysk, Kk . _ . 2n, (1)st k 4 ¢:8t,(m)
D) ST D S (W K B L ST ) g T




Here, the column matr
1s defined by

X
(K)Pq (-U ~¢)Pq

the matrix of increme

256

ix of coefficients to be determined

X T

X = ’ = ’

Xy pg™ g Bp% %) o™ Ypg’ Vpg!
(113)

ntal stress resultants by

(i) st (i) , (1) (1) (i), st

v ={a b '

W pak  “1¥pgk "pak %pq Ppg Vi

L, {1)st (i) 1) (1) S (1)
(‘\) = 1
" qu (Cqu qk pq dpq )W {114a)

with the coefficients of the form

g 2 ao o a3 g
q5gk” rfof(rquk“r~rquk bs“r+1):a—rquk ba“r]

3 2 a3 a’ aB
qpgk” rEO[(r pakr)iatr qubaaurvrquk ca3Ur+1]
27 - é [( 20 LGB o ) a3b0 ]

pg rog- T Dq “rTrpq YgMr+l’ia Trfpg”ar

3 2 a3 af 13
apq - r;O[(r pa r) ar quaeir r'pgd as ”3:«“1:l

2 (114

o _ [( w o 28 ) - w3 O ]

pgk~ I,t'r pgkPr r qu Fr+1’:q v pak altr

3 2 a3 a8 w8
bqu: rio[(f quJr) o rpak baa“r " pgk Cas“r+lj

o 2 a0 28 o .3 o

pq rio[(rqu“r r® Polrit) iyt pg ba”rj

3 _ : _«13 o R
bpq i K;O[(r Pa f) H+I quaB rr- Pq ukpf+1]

and
2

a - aqg [e33) o] o3 .
gk’ . [(r paktr+1 rquk r+2) a gqu“r]
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3 B - w3 33 af
pak’ r:o[(fquk“r+l s e pa e T Vpakaa e e
AR
5 rqukga84r+2j
S [( a9 - 3,0 a3
B1 Lo F R r+liropqisire2) - 7y ]
3 _ E [( a3 33 . aB _ KGSC 1
£g -0 r”pq“r+1 i ¢ pq“r r“pq “agMr+17r pg-as® r+2d
7 o= g [(wes W p%y ) - b, (1l4c)
pak =0 r* qu 'r+1 " qu shren’ g™y qu
3 E [ a3 ), 33 + 03 b FEL
“ogk” r:O r“pak r+1ar Yoaktr rpak agFre17 "pakCas r+2]
g7 = f [( el ,as g ) - L0903 ]
PG Ll - ropatr+1 r pg Ye¥r+2’:a r pg Fr
33 3 % [( %3 33 C b CLQ
Toa T LI, “pax”r+1’ :a ripgkfr et qu 28Mr+1 r°pq ez Hr+2]
the ratrix of initial stress resultants by

. . . . . .
3 )(lRSt:(a(l)y (1) )vst, (w0 )(1)sb:(c(l)1 d(1)
o pak opGgk Topgk’ i o' pgk opgk “opgk
with the coefficients of the form
(=) %P7 _yafgo (e) P .
ocog: O pg:: e O o 2 o
(o) e Cbrqu (l—ic)
lo)sTets c a2 {n) n
() . aZ.0.pP4 2,0 P9
aopq3' ('o D£V3 ) 1 LIO Lav3'€
(%) St RGBTy ey (o)
Crndn o g olo) 1q g? Pq:ta

{115Db)
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(3) _ BP9 Bo o P9
aopq3 (No 3,8 No Bo V3

(o) _ a8 (d) a a3 0 (o) Pg
bopqo'(Mo wpq:8+Qo wpq):a 4 bubs Yo

;;’n— Mnggbgw(n)(l—éq)

d i (1155)
(0) __ 03,0, Pd) _%,0, Pd_y25,0 P4 !
opa3 (Mg PgwWy N N Mo a¥3,8
(3) _, a8, (0} p9g g {c) Ba (o)

bopqc'(Mo bB Yo ):a+Qochwpq +Mo chwpq o
{3) o P4 a pqg e P9

D opq3'(M V3, s Y9573 VoMo Cea"3

and

C(c) =(MQSVG y-0%yC _Masbob(c) pPa,
opdo 0 pg:s3’:a O PYg:a O a B a
() __pa8y (o) n,Pa

copqn M, b N b5 (n )(1 6 )
(¢} __ y02,0,.,Pa o .0 pq @8, 0 P9

“opa3” g Dy V3 )'a+quO 3 M5 ba 3,8
(3) _,,a8,0 an {¢)

COPQO—(MO bﬂv(o)):a+MO boBV:n Qobav(o)
(31 _ 28 ,P9 _wvfa P4 {115c)
opg3 (Mo V3,8):u Qo 3,a Mo CSU 3
(o) __, Jlo) S8 O ) 4R wo_KaSbob(o)w ,
opgs o 'pq o "pg:g’:a o0:a O a B
(g) (¢).n

b 1

opan” Ko Py P () (178,)
‘U) ab . 0 I)q g  Pg

dopq3 (K bBW ) o ba 3,3




al?) kMo ) kg /(“)
opga O B8 (0) ta 0O g pqg:
(1157)
(3) _  goe8yPa _ BowPd, pa  PAd_,. P4
opa3”™ Ko M3, g) 1 o Ko M3 FRS, W3 W
the matrix of load resultants by
(i) st t - (i) (1)
L . P P
(L) oo Lt o) e ) T,
(i)st_ st (i) (1) 11¢)
(K) ook =y [(r S) pgr (R 81 27 ] (11%)
with the coefficients of the form
i 2 ! " 37] O J_ ) "
(P*,PYiR",R )qu: rf rryqu r )= r qubn c(br+1 )]
i 2 31 v, 3n, 0.1 L,
Pl’pn;Rl ,R" - X K r - K b 5 ’ ) (117)
( 'ba = I, [fpq (4 £ )= pgPneg i lp)]
. 2 .
~ n,ct ny, L1 _ - " _ 3.'] 0.1l , oo
(Q%,Q7%:8 Vpax” oo [; qu( ) r“pgk o(iir+1)-J
i 2 3l ) " 3n g l " ]
(Q',Q";s',s") = [« (v’ )= b (w ")
PG o "XUPY lx r’pPano I,
with
p (1) :P'(i) "(1) Q(i):s'(i)_s"(i) (118)
pax "pak  pgx """ "' Tpg Tpg Pg
l'll _ "I "- ‘l [1]
(:r )‘(brlurlbr+llur+l)
and
(1)st (i) (i) st St oo (1)
=W, R o
(%o)qu (poQo pak’ (ﬁo)qu 1 ( obo)qu (112)
with the coefficients of the form
',p", "R ; P ,....R 120
[ee o' o O)pq(o) ( o pq3] E(~Ol pq a’ (120)

- a bOV
(rop)b,

> ]

Pqg
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3

R (o)
¥ ] »
[(p ,...,Ro)pq0 (B, ... R )pq3] [(r Ol)b qu,
a | pg 190
(E01)V3,a {120)
1 n O . ] B 3 0 .
[(Qo,---,So)pq(o),(QO,....S ?] (r 2)wpq Plrgy v
o 3
(~02)b wpq |
1 " g . ] " 3 B 3 . a g (G)
C00gr -+ v80) 2g3i (Qgre==sSy) noad=Lirg w7 (x5 )% 2]
where
1] " l
(PO—PO Po)qu,...,(S =S —So)qu (121)
(r (l),r (l))=t3l at x3=(z+h,z—h)
o o) e}
(v u" Hl n i
(rox) MaoMa el MasllTo
and the matrix of acceleration coefficients as
ilst_ k. Lk st (1)st_ k k st
(A)qu —(uoqu “lwpq)vi p (B)qu (lequZJpq)wi

(122)

in the notation of (59).

In view of the equations above, the continuity of tractions
is expressed by

P,Q

l(m) ‘(i) st k '{i)st (m)
= L (X)) +L (X, ) ]
List)  , g-0 pPgk - P9 Jopgk
"(1)st k "(i)st k 4 {m+1) -0
[quk X)pq+%opq} (¥u)Pq] J
(123)
P,Q '
2(m) / (1)st X g (L)st o 4k
Ser)” & IR ( )pq+ opgk (~u)pq](m)
pP,g=0
(1)st k ."(i)st k q(m+1),
K L X = 0
-1 ~Pak y)pa-Oqu (~u)pq] )




1=1,2,3 ; m=1,2,...,N=-1

in which a prime (or a double prime) is used to denote the
value of quantities at x°=z+h (or x3=z-h), as is used in all
the foregoing equations.

Mechanical boundary condi¢tions

The boundary conditions associated with the macroscopic
equations of incremental motion (112), are expressed 1in
variational form by

N

K {(m)

§J,=

. ! aj Lo
) {,\)CLEL* _(t +t
m=1

.

. 3. 3,
uj;k)](ovk+x cwk)pdcdx }

[@IAPN

(124)
which clearly imnlies that the tractions are prescribed
on the edge bouniary surface and

¢ (1)

cui =0 on S and SuﬁN)=O on S

1f i uf {123)

Substituting eguation (92) into this eqguation and making
use of the nctation (110), one finds

N

- . e Al A a3 23 e oal) .5 tm
:3,= $uv_dc T3 3+vz3)]5vj+[m*3—(n 3+woa3)]3wj;( )
C r=1
(126a)
where
RS 23 3 3 .
ey s 1,00 wax (126D)
and
Y- vy o a - : < QR
,AM=N1~_ 2 G A2 18 3 by +“Qu g2 _ Ew . aw~
v 05 Y o V7L, E O - LAt
gt v“3—«3w SET a wa B o
' ¥ = v +b7v ) +M A\ +bTw
/ " 7o "0o'3 o ( 3,2 8 c) o] (13,5 ) 0)
R = e 2 SR S N S e SN —bsv +pG0 VE _bBH +PawB
vl M bJK , Vi JO (v 5 Pq 3) K (w . GWB) .
3 ! ol a o o a8 a
45 N Y . 5
, ?O“3+1 (13’_+b6vo)+KO (WB,S +b5wo) (127)

After considering the expansions (%2b) in (125) and then
following some rearrangement of terms, the variational
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Gorpn ey

integral (125) takes the form
N 3 P,Q
= ¢ vdc I e Do e [y 2li)sty,
a *st pak
C m=1 i= 1 s,t=0 P,g9=0 ~ -
. . pP,0 .
a{i)st a (i) ! < (i) st
X -7 W {
(wo)p k (§u qu}éa +{M”‘st - [( qu (f)
P,a=
., a{i)st k oSt (m)
+“fo)qu (¥u)pq 0= j> (128
where the prescribed traction resultants by
. 2(i) _ el Lo, i uf pg ..pPg -
(e M) oo = (T =B 8 Ty ) (Vg ) (129)
in the notation of (71),the matrices of tractions by
(V) a(i)s;_(aai al 21 bazi 5 1 b i)vst
Z'pak " '¥pgk “pgk “pgk  Tpgk Tpgk Tpg’ (1)
o alil)yst | _oid al L ad L xl. s*
Ehogx " oax “pax “pex “og’ii) (130
ith the fficients of the form
a3 2 ad 2 adc
{ay_ >, =% (u )(V (c) = 7 u )(V)
~ Pk g4 - pq S pgk Ll -rtl pak
a al a3
=p (w - 2 1
(13)qu “r(~ qu,( )qu M (i)PJ (131)
where
ad _ a0 a0 1 ad X3 AT = (20 23 gédo ag
'3) pak™ Poik %3 ok Py 1 @k “pax Spg “pax Tpa’
%3 33 a3l a3 a3 a3 \13 33 a3 .03
(20 pax™ Pk %pq Poak Peg’ ¢ gk “pax Spa %pak “pa’
(Er) { r;}+1) (132)
and




D

3 oL W T
v ~ [
r pgk r pgk r pak r’pgk
N

) = o
(-. ! qu _ o o] T g 1

L0

v it ~ - J £ Q
r pgk b r pqgk bB rwqu an r pg L3

a3 a3 a3 23

k=( Fa3
pax

() r'ogk r'pq rpgk r’pg

and the matrices of initial tractions by

(v ythst _uld) iy, st

)a(i)st_
~0 pgk opgk “opgk’ i ~o' pak

with the coefficients of the form

ic
atics

=(c

{133)

o (1) st

du(i))w.
i

opak ~opak
(134)

(135)

charge eguation of

Likewise, after inserting (93) into (16),the variational

integral of charge equations by
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N-1 i 3 3. (m)
§I= T [/ AdA sD, 8(k+x7£)ndx 1° (136)
m=2 A z !
is expressed for the piezoelectric laminae. From this
variational integral, in view of the expansion (93b) and

after carrying out integrations with respect to the thickness

coordinate, one obtains
N-~1

¢I= rdA L [(V+l)6<+(w+m)6g(m) (137)
A m=2
where
o a 3
V=C:u, W=F:5C ; l=c-d, m=£f-g
b rlyz s oprin, 3 vax’ (138)
Z
(c,f):én3(1,x3)D3 at x3=z+h;(d,g)=—un3(l,x3)D3
X =2-h

Now, substitution of (93b) into (137) results in
N P,Q P,Q

. t k
i1= fd4a § t [ven) ST ()1 8y
A m=1 s,t=0 p,gq=0 ~ ~ pgk ~'pg st
€ k. (m)
+ (WK SE ()0 sv (139)
~ ~'pgk ~'pgk st ]
where
st st st st
=(a b a b , =( a
{140)
with the ccocefficients of the form
2 2
a = Z v u_,b = I wa U,
pgk re0 T pgk:c r’ pgk r=0 T ogk:a'r
2 o 2 o
a = I _x LM , b = I £ . .u (141)
pg r_or pa:x r pad o r'pg:a r
2
c = | v U - V3 u_)
pgk™ g f pgk:a'r+l r pgk r’’
2 a 3
- W u - W vl )
d = L (r k:a*r+l r pgk' r
pak  r.g e °a




g I 3 ? L 3
c = « («_ . -« uwy,d =& (5 U - 57 e
P9 ,_g L Pg9:¢ r-1 rpgr Pq _g L P9:% r-1 r’pgr
and
t st st st st st ~
(L)% =(c) 8%, () (x)°° =(£)2° -(g) (142)
~'pgk” J'pgk "<'pgk " “~"pgk” '~'pgk "I pgk
with the denotations by
2
r st st 1 _ st o 3
L(S)qur(g)quJ—K rio(urlur)(ry )qu '
2
- st st » ,st ! " 3
i I =£ r
and . . . . .
i _ i i i i 4
(r¥ 'pak™rVpgk r"pak rpq r°pq’ (14
are introduced
In view of equations (42) and (138), the continuity of
surface charge by
L TSt X I )5t (R Y
< = - S X - X =
St 5, q=0 - pPgk "~ pq - pak~'pq
m=i,2,...,N-1 (145)
P,Q
2(m)_"~ " -, - St k 9 (m)_ st k 1 (m+1), _
se = L BP0y L(9) pai (8 g $ =0
p,q=0
is given.

Electrical boundary conditions

As before, the electrical boundary conditions (1l6) 1is
written in the form

N )
fI*= T 5 1 f(j;v D“)(S<+x36;)udcdx3 }(m) (146)
v
m=1 C Zm
with
Ed'=35"=0 on S (147)

£

for the piezoelectric strained laminae. In the boundary
conditions above, the surface charges are taken to be
prescribed on the edge boundary surface, while the electric
potential is applied to the faces as in equations (82)-(84).
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After inserting (93) into (146 } and then integrating it
with respect to the thickness coordinate, the variational
boundary integral can be put in the form

N
§1,= £ 6 {[(C,-v c ) 8k+ (P =v F )ag]dc}( m) (148 )
m=1 C
where the edge-surface resultants are defined by
(C, F )= o, (1,%x°) udx> (149 )

Z

Lastly, a substitution of the expansion (93b) into the
abcve variational integral gives

N P,Q P,0Q
st K -
51,= 6 dc = r {[c, £ (C) (0% Jey
C m=1<:s,t=0 t ,g=0 ~ pck T pg st
P,Q
T st k 9 (m) e
*[P*St & (f)qu(¥)pq45vst}:> (150)

Here, the denotations of the form

r~ st - st
;L*Qt,(§)quj=LC*,(?)qu]K

st
[r *St k] "F*’ (F)qu]5 (151 )

[\S]

) (v

(c. ) r+1’ ‘r! 'pak

{(u rlU

[T

qu:vd

r=0

are introduced.

mn
o
t=h

G o v
i«

g e guat
D c

n ion
e tric 1l ami

3

a

0]

r 1 n
o 1l e

N (D

Now, setting the variational integrals (112), (128), (139)
and (150) egual to zero, for the arbltrary and independent
variations of the coefficients \al 'y and v |

st st st
one reads the macroscopic equatlons of
incremenrntal motion as
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)st Ly (1) Kk (l)St (m)
p VHISE « T i)st
£ (.’*I)l = “_ L(\j‘*L‘j pqr\ (~ pq+ (\/ +L -+ [})qu _u pq]
p,q=0
on A (132)

A P,Q ‘ |
_1¥st L (1)yst k 2 (i) st Kk (m)
= = s 3 i - .

(m) o 5;0[(Y+§)qu (¥)pq+(10+§o p(U@)qu () ]

with the following natural mechanical edge conditions

. P,Q
(Lyst _ . o) re a l)St a(l)st k (m)
©uim1 v, Nest T é:o[(w (x ) USRStV
. along C (1523)
(st _ a7 ali)st .k - cl(i)st k7. (m)
Frim2 e T i_o[(w kgt ST () oy
ST
and the macroscoric charge equations of electrostatics as
D, N
(st)y  ~ '~ Ty X 4 (m)
RPN DA +L) (X) 1
{m)1 o,q=0 DQ& ~ P4
0. on A (154)
(st) o . (m)
: = ¢ [ ]
(m) 2 0,920 ° pq&

witn the following natural electrical boundary conditions

p,0
(st) _. rx (h)st (X)k
S . ke % < .
(m) 1 st 0,q=0 - pgk L' pqg
along C (15%)
(2+) p,2 K
N (F) (X)
*(m)2 ~*st - k
(m) 2 5,520 pg pq
. i)st t
Here, it snould be noted that (a,e*)é;)s' and (E,E*)iﬂ are
not egual to zero due to the approximate 7

nature of the expvansions (92) and (93). The macroscopic
equations above together with the equat.ons (94),(95),(123)
and {145) for the continuity of mechanical displacements,
tracticons, electric potential and surface charge constitu=ze
the agnroxinate, higher order governing equations for the
nlezoaelectris strained laminae.




263

Moment egquations

At this final stage. in view of equations (94),(95), (123),
{145) and (152)-(155),the moment equations of the form

Teld)  Hitst) olm) (1) (m)y s .t O(m) . i(st)_s_t
};[E (015 (oym © (st o] S E (i) st (o)m X170
(159)
- r.m (st) o(m) (m)4 _s_t g(m) (st)_s_t
S sty o oym € (1) st E ] XX5 QA% £ €, v oy X xS do=0
A C -
(157)
are established so as to compute the matrix of unknown
coefficients as
(x) KM _ gk tm) gk tm) (m) -, (m) ) 7 (158)
~ Pq Pg Pg pgq Pg
with
k=1,2,3 ; (p:S)=1121---,P H (qlt)=ll2I"'lQ H {159)

m=2,3,...,N-1

for the governing equaticns of piezoelectric strained
laminae. Here, (m) does not take the values (1) and (N)
since the mechanical displacements and the electric potential
are given on the upper and lower faces of piezoelectric
lam.nae as already indicated in equations (125) and (147).
yi(st) i (st) i(st (st)
m e Moymr A “(é)m) and ¥ (5ym
undetermined multipliers and are introduced to take into
account of the continuity of tractions (123) and mechanical
displacements (94), that of surface charge (145) and electric
potential (95) and the mechanical and electrical boundary
conditions (153) and (155), respectively.

Zlso, are Lagrange

The moment equations (156) and (157) form a system of
simultaneous nonlinear algebraic equations in terms of the
unknown constants (158), and they can be solved by standard
technigues of numerical computation for any special case
under consideraticn.

Sfome applications of the moment equations for special
rotions of the piezoelectric strained laminae are the
topics of future study, and they will be reported elsewhere.




[o predict the dvnamic response of a pilezoelechric strained

two unified algorithms of solutions based upa:

Kantorovich's method and tne method of moments DGTY

in invariant form in the previous two sections. Thus,

Yy can be readily applicable to the macromechanical

analysis of the plezoelectric laminae using the most suitable
tem of coordinates for its geometrical configuration.

b
U
o
o
v
@]
~

3

Mow, the results of two unified algorithms are specializ=l
€0 as to eobtain those involving special gecmetry , kinema*i::
incremental motion, material properties and mechanical bias

In the absence of curvature effects in which case the
shifters are reduced to the Kronecker deltas, namely,

bo= 0 ouis O

[
(S
—

17
Lp V)
'

then the results reduce to those of piezoelectric strained
laminaes with plane ccnstituents. Likewise, the case of
snallow constituents can be readily introduhcﬂ Moreover,
when a particular geometrical configuration is considereZz,
the results of this particular case can pe stated with tne
nelp ¢f the succint ncotation of tensor analysis us=2d herein
and by chcosing the most appropriate coordinate system for
its geomeitry. As a particular case of interest, consider
a plezoelectric laminas with constituents in cylindrical
.ap The plezocelectric laminase is referred to the
711 ical cocrdinate systgm (X,2,2) with x=x1 being taken
in gi axial direction, £=x° in the c1rpumLerent1alH’“znion,
z=x" 1in the radial dirsction. The origin of the cvlindrical
coordinate system 1s located on tuc midsurface A of first
constityent with 1ts radius of curvature R, and henge, the
first, second and third fundamental formz of the m;ds rface
A are record=d in the form
aAI:DZ:l/a11 P a22:a22=1 ; b%=—1/R ; C11:l
all other (a .,b _,c .1=0 (lely
e 8 Sl (¢ !
rtner, when I 1s tazen to ke equal to 1, the resulting

specially suitable for numerical solutions
f piezoceramic shells under a bias [10].
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On kinematdic s

In the field of mechanical displacements (92), by choosing
the components as

a
wa—w(v3,a+bavo) ' w3=0 ;o £=0 (162a)
one obtains the Kirchhoff-Love theory of curvilinear
piezoelectric strained laminae. By virtue of the continuity
of mechanical displacements (41) and that of electric
potential (43), equation (1l62a) implies

U =v -x>(v, +b% ), U,=v, and 4=« (162b)
Q& a 31(1 a 3 3

for all constituents. Apparently, eguation (162) leads to

the results of piezoelectric laminae within the frame of

the effective modulus theory of composites (e.g.,[38]).

This has the contradictions of the Kirchhoff-Love hypotheses

in each constituent and alsoc it is unable to account for

the dynamic interactions at the interfaces of adjacent

constituents. Further, the results can be simplified for

the case when some of the layers are very thin. Hence, one
reads w!l™ =0 and t“% =0 for the very thin (m)-th constituent
of piezgelectric lém nae. Accordingly, *he terms involving
with Swém) are discarded in the macroscopic eguations of
incremental motion and the associated mechanical boundary

conditions.

On 1incremental motdion

In the field of mechanical displacements (92), v,stands Zor
the extensional (or the stretching) motions, v, and w_for
the flexural (bending) motions, and w, for the thickné&ss
stretching of constituents. Accordingly, for the flexural
type of incremental motions, only the terms involving Vs
and W, should be kept in the resulting equations of
piezoalectric laminae. However, all the terms should be
included for the coupled type of incremental motions.

On material properties

Special classes of materials rfor the constituents of piezo-
electric laminae may be considered in the constitutive
equations (48), (50), (1003 and (101). Of the classes, the
constitutive relations of the form




Cljkl=fCll(1)(l),C13(1)3=Cl3l3=%

(1)1

(cl111_ 2222,

-

ctNo ot e, et 0,07y, e (163
are recorded for the constituents when the direction of
olarization coincides with the thickness coordinate x3,
39]. 1In this case, the number of independent material
constants 1is reduced from 45 to 12 as indicated in equation
(163).

Mechanical bias

In the present analysis, the piezoelectric laminae is
subjected to a general state of initial stresses. Several
restrictions can be readily taken up in this mechanical
bias. Besides, when the terms involving the bias, that is,
th~-e indicated by a zero index are discarded, the resulting
€ ions provide a standard basis for generating approx imate

ot solutions for the piezoelectric unstrained laminae

.,[5]). on the other hand, if the terms involving
incremental motions are omitted, the standard basis is
provided for a piezoelectric unstrained laminae subjected to
large displacement gradients and large angles of rotation.
In addition, dropping out the electrical terms, one readily
obtains the standard basis for a multilayer shell.

Lastly, a complete linearization by discarding all the terms
of mechanical bias leads to a fully linear suystem of
algebraic equations, that s, equation (89) for Kantorovich's
method and equations (156) and (157) for the method of
moments; their solutions are always at hand.

7- CONCLUSION

To provide a stand~-d basis for generating approximate
direct solutions for the macromechanical analysis of a
piezoelectric laminae under mechanical bias, two unified
algorithms are presented which are based on Kantorovich's
method and the method of moments. Both the methods, though
they are well-known in computational physics, are overlooked in
ciezecelectricity, and they are first formulated herein, within the
author's best knowledge, for the numerical treatment of piezoelectric
elements. The numerical algorithns are formulated on the
basiz of Lise expansions (39), (92) and {93) which are
complete in the closure of piezoelectric strained laminae
due to Welerstrass's theorem. The formulation being in




272

tensor notation, the resulting equations may be expressed
in any particular coordinate system most suitable for the
geometrical configuration of piezoelectric laminae under
consideration. The resulting equations by both the methods
(39) and (156), (157) take into account all the significant
electrical and mechanical effects in the constituents of
piezoelectric laminae, and also, all they maintain the
continuity of mechanical displacements, electric potential,
tractions and surface charge at the interfaces of constit-
uents. These equations accommodate all the incremental
types of extensional, thickness and flexural as well as
coupled, small motions of a piezoelectric laminae under a
general state of initial stresses. Further, special cases
are pointed out involving geometry, kinematics,material
prcperties, mechanical bias and small incremental motion.

Both the algorithms formulated herein and especially the
algorithm based on the method of moments seem to be an
efficient and computationally easy method in investigating
the dynamic behavior of piezoelectric strained laminae, as
it is anticipated by similar algorithms in electromagnetic
theory. The algorithms mav be readily extended so as to
incorporate the biasing of electrical, thermal and even
magnetic fields (e.qg., 40])and also to take into account
the viscoelastic properties of constituents by replacing
their elastic stiffenesses by their corresponding convolution
integrals. Besides, both the algorithms may be formulated
for the macromechanical analysis of a piezoelectric one-
dimensional element [41] .

In closing, the application of two algorithms which remains
to be exhibited for certain motions of the piezoelectric
laminae by choosing its geometry, electro-mechanical
properties of constituents and mechanical bias is a topic
of forthcoming studies.
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